山西省灵丘县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开灵丘县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. 下列防疫的图标中是轴对称图形的是( )
A. B. C. D.
2. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )
A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 若把分式中的和都扩大5倍,那么分式的值( )
A. 扩大5倍 B. 不变 C. 缩小5倍 D. 缩小25倍
5. 若一个正多边形的一个内角与它相邻的外角的比是,则这个正多边形的边数为( )
A. 14 B. 12 C. 10 D. 8
6. 已知等腰三角形的一个内角为50°,则它的另外两个内角是 ( )
A. 65°,65° B. 80°,50°
C. 65°,65°或80°,50° D. 不确定
7. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
8. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA 2,则PQ的长不可能是( )
A. 4 B. 3.5
C. 2 D. 1.5
9. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
10. 如图,若x为正整数,则表示分式的值落在( )
A. 线①处 B. 线②处 C. 线③处 D. 线④处
二.填空题(共5题,总计 15分)
11. 如果是一个完全平方式,那么m的值是__________.
12. 当x=_________时,分式的值为0.
13. 当________时,分式无意义.
14. 已知在中,三边长,满足等式,请你探究之间满足的等量关系为__________.
15. 如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为_____.
三.解答题(共8题,总计75分)
16. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
17. 先化简:,再从1,2,3中选取一个适当的数代入求值.
18. 如图,已知的顶点分别为,,.
(1)作出关于x轴对称的图形,并写出点的坐标;
(2)若点是内部一点,则点P关于y轴对称的点的坐标是________.
(3)在x轴上找一点P,使得最小(画出图形,找到点P的位置).
19. 如图,已知BF⊥AC于F,CE⊥AB于E,BF交CE于D,且BD=CD,求证:点D在∠BAC的平分线上.
20. 在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
21. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
22. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
刘峰:我查好地图了,你看看 | 李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车. |
刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了. | 李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达. |
23. 如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“巧数”,如:,,,因此4,12,20这三个数都是“巧数”.
(1)36是“巧数”吗?为什么?
(2)设两个连续偶数为和(其中取正整数),由这两个连续偶数构造的“巧数”是4的倍数吗?为什么?
(3)求介于50到101之间所有“巧数”之和.
灵丘县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:轴对称图形定义:把一个图形沿某条直线对折,对折后直线两旁的部分能完全重合.发现A,B,D都不符合定义,所以A,B,D都错误,只有C符合,所以C正确.
故答案为C.
2.【答案】:B
【解析】:解:=7×10-9.
故选:B.
2.【答案】:D
【解析】:A. ,不符合题意;
B. ,不符合题意;
C. 不能继续计算,不符合题意;
D. ,符合题意;
故选:D.
4.【答案】:C
【解析】:把分式中的和都扩大5倍,
即,
即得到的式子比原式缩小了5倍.
故选:C
5.【答案】:B
【解析】:解:设这个正多边的外角为x°,由题意得:
x+5x=180,
解得:x=30,
.
故选B.
6.【答案】:C
【解析】:若50°为顶角,则底角为,
即另外两个内角为65°,65°;
若50°为底角,则顶角为,
即另外两个内角为80°,50°,
综上可得另外两个内角为65°,65°或80°,50°,
故选C.
7.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
8.【答案】:D
【解析】:解:当PQ⊥OM时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,PA=2,
∴PQ=PA=2,
所以的最小值为2,
所以A,B,D不符合题意,D符合题意;
故选:D.
9.【答案】:D
【解析】:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
【画龙点睛】本题考查了正方形、矩形的知识;解题的关键是熟练掌握正方形、矩形的性质,从而完成求解.
10.【答案】:B
【解析】:原式,
∵为正整数,
∴,
∴原式可化为:,
∵分子比分母小1,且为正整数,
∴是真分数,且最小值是,
即,,
∴表示这个数的点落在线②处,
故选:B.
二. 填空题
11.【答案】: 25
【解析】:解:∵x2-10x+m是一个完全平方式,
∴m==25.
故答案为:25.
12.【答案】:2
【解析】:∵分式的值为0,
∴x2-4=0,x+2≠0,
解得:x=2.
故答案为:2.
13.【答案】:
【解析】:依题意得:,
解得:,
14.【答案】:
【解析】:∵,
∴,
∴,
∴
∵,
∴,
∴,
故答案为:
15.【答案】: 4或10
【解析】:解:如图,过点P作PH⊥OB于点H,
∵PE=PF,
∴EH=FH=EF=3,
∵∠AOB=30°,OP=14,
∴PH=OP=7,
当点D运动到点F右侧时,
∵∠PDE=45°,
∴∠DPH=45°,
∴PH=DH=7,
∴DF=DH﹣FH=7﹣3=4;
当点D运动到点F左侧时,
D′F=D′H+FH=7+3=10.
所以DF的长为4或10.
故答案为4或10.
三.解答题
16【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
17【答案】:
,-5.
【解析】:
原式
,
当,2时分式无意义,
将,代入原式得:
则原式.
18【答案】:
(1)图见解析,点的坐标为;
(2);
(3)见解析.
【解析】:
(1)分别找出A,B,C关于x轴对称的点A1,B1,C1,再顺次连接点即可;
(2)利用“关于谁对称谁不变,不关谁对称谁全变”可求出P的对称点坐标;
(3)过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.
【小问1详解】
解:先找出点A,B,C关于x轴对称的点A1,B1,C1,再顺次连接A1,B1,C1.
如图所示,即为所求:
的坐标为.
【小问2详解】
解:∵P关于y轴对称,则纵坐标不变,横坐标变成原来的相反数,
∴点P关于y轴对称的点的坐标是.
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.
19【答案】:
见解析
【解析】:
证明:∵BF⊥AC,CE⊥AB,
∴∠DEB=∠DFC=90°,
在△DBE和△DCF中,
,
∴△DBE≌△DCF(AAS),
∴DE=DF,
又∵BF⊥AC,CE⊥AB,垂足分别为F、E,
∴D点在∠BAC的平分线上
20【答案】:
(1)见解析;(2)见解析
【解析】:
(1)证明:连接BD,
∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=×120°=60°,
∵AD=AB,
∴△ABD是等边三角形;
(2)证明:∵△ABD是等边三角形,
∴∠ABD=∠ADB=60°,BD=AD
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE与△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF.
21【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
22【答案】:
刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米
【解析】:
解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米,
根据题意,得,
解得,
经检验,是所列分式方程的解,且符合题意,
∴(千米/时),
答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.
23【答案】:
(1)是,见解析
(2)是,见解析 (3)532
【解析】:
小问1详解】
)36是“巧数”,理由如下:
∵,
∴36是“巧数”;
【小问2详解】
∵n为正整数,
∴2n-1一定为正整数,
∴4(2n-1)一定能被4整除,
即由这两个连续偶数构造的“巧数”是4的倍数;
【小问3详解】
介于50到101之间的所有“巧数”之和,
,
,
.
山西省大同市灵丘县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省大同市灵丘县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省大同市灵丘县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省大同市灵丘县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共14页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版),共16页。试卷主要包含了选择题等内容,欢迎下载使用。