山西省岚县2022-2023学年八年级(上)数学期末模拟测试(解析版)
展开岚县2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共10个小题,每小题3分,共 30分。下列各题,每小题只有一个选项符合题意。)
1. 下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A. B.
C. D.
2. 最近科学家发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为( )
A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明ΔABC≌ΔEDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )
A. HL B. SAS C. SSS D. ASA
5. 把分式的x,y均扩大为原来的10倍后,则分式的值
A. 为原分式值的 B. 为原分式值的
C. 为原分式值的10倍 D. 不变
6. 下列各式中,正确的是( )
A.
B.
C.
D.
7. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍 B. 不变
C. 缩小3倍 D. 扩大9倍
8. 若,,则的值为( )
A. 4 B. -4 C. D.
9. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4 B. C. D. 6
10. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A. 1个 B. 2个 C. 3个 D. 4个
二.填空题(共5题,总计 15分)
11. 计算: =_________.
12. 已知,,求__________.
13. 如果一个多边形的每个外角都是,那么这个多边形的边数为_________.
14. Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为________.
15. 如图,已知中,,直角的顶点P是的中点,两边、分别交、于点E、F,给出以下四个结论:
①;
②是等腰直角三角形;
③;
④当在内绕顶点P旋转时(点E不与A、B重合),.
上述结论中始终正确有__________(填序号).
三.解答题(共8题,总计75分)
16. 计算(1)
(2)
(3)
(4)
17. 先化简:,再从1,2,3中选取一个适当的数代入求值.
18. 如图,在下方单位长度为1的方格纸中画有一个△ABC.
(1)画出△ABC关于y轴对称△A′B′C′;
(2)求△ABC的面积.
19. 在△ABC中,∠B=90°,∠C=30°,AC=6,点E,F分别在AB,AC上,沿EF将△AEF翻折,使顶点A的对应点D落在BC边上,若FD⊥BC,求EF的长.
20. 如图(1)在凸四边形中,.
(1)如图(2),若连接,则的形状是________三角形,你是根据哪个判定定理?
答:______________________________________(请写出定理的具体内容)
(2)如图(3),若在四边形的外部以为一边作等边,并连接.请问:与相等吗?若相等,请加以证明;若不相等,请说明理由.
21. 我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:
(1)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).
(2)用竖式进行运算.
(3)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求的商式和余式.
解:
答:商式是,余式是( )
我挑战:已知能被整除,请直接写出a、b的值.
22. 抗洪抢险,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则延期3小时才能完成.现甲、乙两队合作2小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需要多少小时.
23. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
岚县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,本选项不符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、是轴对称图形,本选项符合题意.
故选:D.
2.【答案】:C
【解析】:数据0.00000456用科学记数法表示为:.
故选:C.
2.【答案】:D
【解析】:A. ,故该选项不正确,不符合题意;
B. ,故该选项不正确,不符合题意;
C. ,故该选项不正确,不符合题意;
D. ,故该选项正确,符合题意;
故选:D.
4.【答案】:D
【解析】:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
5.【答案】:A
【解析】:x、y均扩大为原来的10倍后,
∴
故选A.
6.【答案】:B
【解析】:解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误.
故选:B.
7.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
8.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
9.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
10.【答案】:C
【解析】:要使△ABP与△ABC全等,
必须使点P到AB的距离等于点C到AB的距离,
即3个单位长度,
所以点P的位置可以是P1,P2,P4三个,
故选C.
二. 填空题
11.【答案】: 3
【解析】:原式=1+2=3
故答案为:3.
12.【答案】:
【解析】:解:,,
,
.
故答案为:.
13.【答案】:12
【解析】:解:∵多边形的外角和是360°,每个外角都是,
∴360÷30=12,
∴这个多边形有12条边,
故答案为:12.
14.【答案】: 8
【解析】:解:,,,
,
,
平分
,
则同理可得,
的周长.
故答案为:8.
15.【答案】: ①②③
【解析】:解:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP=CP,
又∵AP=CP,∠EPA=∠FPC,∠EAP=∠FCP=45°
∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,
∴AE=CF,△EPF是等腰直角三角形,,①②③正确;
故AE=FC,BE=AF,
∵AF+AE>EF,
∴BE+CF>EF,故④不成立.
正确的是①②③.
故答案为:①②③.
三.解答题
16【答案】:
(1) ;(2) ;
(3)100;(4).
【解析】:
解:(1)原式=1+4-
=;
(2)原式=a6-a6-8a6
=-8a6;
(3)原式=(10+)×(10-)+32017×()2017×()2
=100-+1×
=100;
(4)原式=[a-(b-2)][a+(b-2)]
=a2-(b-2)2
= a2-b2+4b-4.
17【答案】:
,-5.
【解析】:
原式
,
当,2时分式无意义,
将,代入原式得:
则原式.
18【答案】:
(1)见解析;(2)
【解析】:
(1)解:关于y轴对称的如下图所示 :
(2)
.
19【答案】:
2
【解析】:
解:∵FD⊥BC,∠C=30°,
∴∠CFD=60°,DF=FC,
由折叠的性质可知,∠AFE=∠DFE=60°,AF=DF,
∵∠B=90°,∠C=30°,
∴∠A=60°,
∴△AEF是等边三角形,
∴EF=AF=FC,
∴EF=AC=2.
20【答案】:
(1)等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由见解析.
【解析】:
解:(1)连接,
在中,
,
是等腰三角形,
又
是等边三角形(一个内角为60°的等腰三角形是等边三角形)
故答案为:等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由如下:
是等边三角形,
又是等边三角形,
,
即
.
【画龙点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
21【答案】:
我会做:
;,
我挑战:
【解析】:
解:我会做:补全如下,
答:商式是,余式是()
故答案为:;
我挑战:能被整除,则余数为0,根据题意列竖式运算即可,
解得
【画龙点睛】本题考查了多项式除以多项式,掌握多项式的乘法是解题的关键.
22【答案】:
甲单独完成全部工程需6小时,乙单独完成全部工程需9小时
【解析】:
解:设甲队单独完成需要x小时,则乙队需要(x+3)小时.
由题意得: +=1,解得x=6.
经检验,x=6是方程的解.所以x+3=9.
答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.
23【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
山西省吕梁市岚县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省吕梁市岚县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共12页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省安泽县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省安泽县2022-2023学年八年级(上)数学期末模拟测试(解析版),共17页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省宁武县2022-2023学年八年级(上)数学期末模拟测试(解析版): 这是一份山西省宁武县2022-2023学年八年级(上)数学期末模拟测试(解析版),共18页。试卷主要包含了选择题等内容,欢迎下载使用。