山西省阳泉市盂县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. 用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是( )
A. B. C. D.
2. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )
A. B. C. D.
3. 计算(4a3 12a2b 8a3b2) ÷ (4a2)的结果是( )
A. a 3b 2ab2B. a2 3b 2ab
C. a 2abD. 1.5a 3b
4. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
5. 若分式有意义,则x应该满足的条件是( )
A. B. C. D.
6. 如图,将一块含有角的三角板的两个顶点放在直尺的一组对边上.如果,那么的度数为( )
A. B. C. D.
7. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
8. 某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为( )
A. +=B. -=
C. +1=﹣D. +1=+
9. 如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )
A. 2B. C. 4D.
10. 明明要到距家1000米的学校上学,一天,明明出发2分钟后,明明的爸爸立即去追明明,且在距离学校10米的地方追上了他.已知爸爸比明明的速度每分钟快20米,求明明的速度.若设明明速度是米/分,则根据题意所列方程正确的是( )
A. B.
C. D.
二.填空题(共5题,总计 15分)
11. 运用完全平方公式计算:(﹣3x+2)2=_________.
12. 若一个直角三角形的两边长分别是4cm,3cm,则第三条边长是________cm.
13. 设,则A=______.
14. 如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.在图2中,的度数为__________.
15. 如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是 _____.
三.解答题(共8题,总计75分)
16. 分解因式:
(1)4m3n﹣mn3
(2)(x﹣1)(x﹣3)+1.
17. 先化简:,再从0,2,3三个数中任选一个你喜欢的数代入求值.
18. 如图, QUOTE 的三个顶点的坐标分别是,,.
(1)在图中画出 QUOTE 关于x轴对称的
(2)分别写出点A,B,C三点关于y轴对称的点,,的坐标;
(3) QUOTE 的面积为______.
19. 如图,在 QUOTE 中,∠B=25°,∠BAC=31°,过点A作BC边上的高,交BC的延长线于点D,CE平分∠ACD,交AD于点E.求:(1)∠ACD的度数;(2)∠AEC的度数.
20. 已知,如图, QUOTE 为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
21. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
22. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
23. 如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)证明:在运动过程中,点D是线段PQ的中点;
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
盂县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
解析:解:选项不是轴对称图形,故不符合题意;
选项不是轴对称图形,故不符合题意;
选项是轴对称图形,故符合题意;
选项不是轴对称图形,故不符合题意;
故选:
2.【答案】:B
解析:解:=7×10-9.
故选:B.
2.【答案】:A
解析:解:(4a3 12a2b 8a3b2) ÷ (4a2)
.
故选A
4.【答案】:D
解析:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
5.【答案】:B
解析:解:由题意,得x+1≠0,解得:x≠-1,
故选:B.
6.【答案】:A
解析:解:如图所示,
∵ ,
∴ =30°,
∵直尺两边平行
∴∠3=30°,
∴∠1=45°-∠3
=45°-30°
=15°,
故选:A.
7.【答案】:D
解析:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
8.【答案】:C
解析:设原计划速度为x千米/小时,
根据题意得:
原计划的时间为:,
实际的时间为: +1,
∵实际比原计划提前40分钟到达目地,
∴ +1=﹣,
故选C.
9.【答案】:C
解析:解:∵P是∠AOB角平分线上的一点,∠AOB=60°,
∴∠AOP=∠AOB=30°,
∵PD⊥OA,M是OP的中点,DM=4cm,
∴OP=2DM=8,
∴PD=OP=4,
∵点C是OB上一个动点,
∴PC的最小值为P到OB距离,
∴PC的最小值=PD=4.
故选C
10.【答案】:B
解析:解:设明明速度是x米/分,则爸爸速度为(x+20)米/分,
根据题意得:,
故选:B.
二. 填空题
11.【答案】: 9x2﹣12x+4
解析:原式=9x2﹣12x+4.
故答案为:9x2﹣12x+4.
12.【答案】:5或7.
解析:①直角三角形的两边长分别是4cm,3cm,则
第三条边长(cm);
②当直角边为3cm,斜边长为4cm时,第三条边长(cm)
故答案为:或.
13.【答案】:8ab
解析:
.
故答案为:8.
14.【答案】:
解析:解:由n边形内角和公式 可得五边形的内角和为540°,
∴,
∴在等腰 QUOTE 中,,
∴,
故答案为.
15.【答案】: ①②
解析:解:∵∠BAC和∠ABC的平分线AE、BF相交于点O,
∴∠OBA=,,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=
=
=
=,故①正确;
∵∠C=60°,
∴∠BAC+∠ABC=120°,
∵AE、BF分别平分∠BAC与∠ABC,
∴∠OAB+∠OBA==60°,
∴∠AOB=120°,
∴∠AOF=60°,
∴∠BOE=60°,
如图,在AB上取一点H,使BH=BE,
∵BF是∠ABC的角平分线,
∴∠HBO=∠EBO,
在△HBO与△EBO中,
,
∴△HBO≌△EBO(SAS),
∴∠BOH=∠BOE=60°,
∴∠AOH=180°﹣60°﹣60°=60°,
∴∠AOH=∠AOF,
在△HAO与△FAO中,
,
∴△HAO≌△FAO(ASA),
∴AH=AF,
∴AB=BH+AH=BE+AF,故②正确;
作OH⊥AC于H,OM⊥AB于M,
∵∠BAC与∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OH=OM=OD=a,
∵AB+AC+BC=2b,
∴
=
=ab,故③错误,
故答案为:①②.
三.解答题
16【答案】:
(1)mn(2m+n)(2m﹣n)
(2)(x﹣2)2
解析:
【小问1解析】
解:原式=mn(4m2﹣n2)=mn(2m+n)(2m﹣n);
【小问2解析】
解:原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.
17【答案】:
x﹣3;﹣3.
解析:
原式=
=
=
=x﹣3.
由于分母不能为0,除式不能为0,
∴x≠2,x≠3,
∴x=0.
当x=0时,原式=0﹣3=﹣3.
18【答案】:
(1)见解析;(2)、、;(3)2.5.
解析:
解:(1)如图,即是所作的图形;
(2),,
点A,B,C三点关于y轴对称点,,的坐标为:
、、;
(3)如图,
故答案为:.
.
19【答案】:
(1)∠ACD=56°;(2)∠AEC=118°
解析:
解:(1)∵∠ACD=∠B+∠BAC,∠B=25°,∠BAC=31°,
∴∠ACD=25°+31°=56°.
(2)∵AD⊥BD,
∴∠D=90°,
∵∠ACD=56°,
CE平分∠ACD,
∴∠ECD=∠ACD=28°,
∴∠AEC=∠ECD+∠D=28°+90°=118°.
20【答案】:
(1)见解析 (2)60°
(3)7
解析:
【小问1解析】
证明: QUOTE 为等边三角形,
QUOTE , QUOTE ,
在△AEB与△CDA中,
QUOTE ,
QUOTE ;
【小问2解析】
解: QUOTE ,
QUOTE ,
QUOTE ,
QUOTE ;
【小问3解析】
解: QUOTE ,,
QUOTE ,
QUOTE ,
QUOTE ,
QUOTE ,
QUOTE .
21【答案】:
(1)A;(2)①4;②5050
解析:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
22【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
解析:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1解析】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2解析】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
23【答案】:
(1)见解析;(2)AP=2;(3)DE的长不变,定值为3.
【解析】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,
∵P、Q同时出发,速度相同,即BQ=AP,
∴BQ=PF,
在和中,
,
∴,
∴DQ=DP;
(2)解:∵,
∴BD=DF,
∵,
∴,
∴,
∴AP=2;
(3)解:由(2)知BD=DF,
∵是等边三角形,PE⊥AB,
∴AE=EF,
∴DE=DF+EF
=3,为定值,即DE的长不变.
原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
山西省阳泉市盂县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省阳泉市盂县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省阳泉市矿区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省阳泉市矿区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
山西省阳泉市郊区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份山西省阳泉市郊区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共18页。试卷主要包含了选择题等内容,欢迎下载使用。