还剩22页未读,
继续阅读
人教版八年级数学上册第十四章整式的乘法与因式分解14.2乘法公式第2课时同步课件
展开
这是一份人教版八年级数学上册第十四章整式的乘法与因式分解14.2乘法公式第2课时同步课件,共30页。
第十四章 整式的乘法与因式分解14.2乘法公式第2课时1.理解并掌握完全平方公式的推导过程、结构特点、 几何解释.(重点)2.灵活应用完全平方公式进行计算.(难点)学习目标导入新课情境引入一块边长为a米的正方形实验田,因需要将其边长增加 b 米.形成四块实验田,以种植不同的新品种(如图). 用不同的形式表示实验田的总面积, 并进行比较. 直接求:总面积=(a+b)(a+b)间接求:总面积=a2+ab+ab+b2你发现了什么?(a+b)2=a2+2ab+b2讲授新课问题1 计算下列多项式的积,你能发现什么规律?(1) (p+1)2=(p+1)(p+1)= .p2+2p+1(2) (m+2)2=(m+2)(m+2)= .m2+4m+4(3) (p-1)2=(p-1)(p-1)= .p2-2p+1(4) (m-2)2=(m-2)(m-2)= .m2-4m+4问题2 根据你发现的规律,你能写出下列式子的答案吗?(a+b)2= .a2+2ab+b2(a-b)2= .a2-2ab+b2合作探究完全平方公式完全平方公式也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.简记为:“首平方,尾平方,积的2倍放中间”问题3 你能根据下图中的面积说明完全平方公式吗?设大正方形ABCD的面积为S.S= =S1+S2+S3+S4= .(a+b)2a2+b2+2abS1S2S3S4几何解释:=+++a2ababb2和的完全平方公式:a2−ab−b(a−b)=a2−2ab+b2 .=(a−b)2a−ba−bb(a−b)(a−b)2几何解释:差的完全平方公式:(a+b)2= a2+2ab+b2.(a-b)2=a2-2ab+b2.问题4 观察下面两个完全平方式,比一比,回答下列问题:1.说一说积的次数和项数.2.两个完全平方式的积有相同的项吗?与a,b有 什么关系?3.两个完全平方式的积中不同的是哪一项?与 a, b有什么关系?它的符号与什么有关? 公式特征:4.公式中的字母a,b可以表示数,单项式和多项式.1.积为二次三项式;2.积中两项为两数的平方和;3.另一项是两数积的2倍,且与两数中间的符号相同. 想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?(1)(x+y)2=x2 +y2(2)(x -y)2 =x2 -y2(3) (-x +y)2 =x2+2xy +y2(4) (2x+y)2 =4x2 +2xy +y2××××(x +y)2 =x2+2xy +y2(x -y)2 =x2 -2xy +y2 (-x +y)2 =x2 -2xy +y2 (2x +y)2 =4x2+4xy +y2例1 运用完全平方公式计算:解: (4m+n)2==16m2(1)(4m+n)2;(a +b)2= a2 + 2 ab + b2(4m)2+2•(4m) •n+n2+8mn+n2;(a - b)2 = a2 - 2 ab + b2y2解: =利用完全平方公式计算:(1)(5-a)2; (2)(-3m-4n)2;(3)(-3a+b)2.针对训练(3)(-3a+b)2=9a2-6ab+b2.解:(1)(5-a)2=25-10a+a2;(2)(-3m-4n)2=9m2+24mn+16n2;(1) 1022;解: 1022= (100+2)2=10000+400+4=10404.(2) 992.992= (100 –1)2=10000 -200+1=9801. 例2 运用完全平方公式计算:方法总结:运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式.利用乘法公式计算:(1)982-101×99;(2)20162-2016×4030+20152.针对训练=(2016-2015)2=1.解:(1)原式=(100-2)2-(100+1)(100-1)=1002-400+4-1002+1=-395;(2)原式=20162-2×2016×2015+20152例3 已知x-y=6,xy=-8.求: (1) x2+y2的值; (2)(x+y)2的值.=36-16=20;解:(1)∵x-y=6,xy=-8,(x-y)2=x2+y2-2xy,∴x2+y2=(x-y)2+2xy(2)∵x2+y2=20,xy=-8,∴(x+y)2=x2+y2+2xy=20-16=4.方法总结:本题要熟练掌握完全平方公式的变式:x2+y2=(x-y)2+2xy=(x+y)2-2xy,(x-y)2=(x+y)2-4xy.1.已知x+y=10,xy=24,则x2+y2=_____52变式:已知 则 _____982.如果x2+kx+81是运用完全平方式得到的结果, 则k=______ 8或-8 变式:如果x2+6x+m2是完全平方式,则m的值是_____3或-33.已知ab=2,(a+b)2=9,则(a-b)2的值为______变式:若题目条件不变,则a-b的值为_____±11a+(b+c) = a+b+c; a- (b+c) = a - b – c.a + b + c = a + ( b + c) ; a – b – c = a – ( b + c ) .去括号把上面两个等式的左右两边反过来,也就添括号:添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号(简记为“负变正不变”).知识要点添括号法则例5 运用乘法公式计算:(1) (x+2y-3)(x-2y+3) ; (2) (a+b+c)2.典例精析(2)原式 = [(a+b)+c]2 = x2-(2y-3)2 = x2-(4y2-12y+9)= x2-4y2+12y-9.= (a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2.方法总结:第1小题选用平方差公式进行计算,需要分组.分组方法是“符号相同的为一组,符号相反的为另一组”.第2小题要把其中两项看成一个整体,再按照完全平方公式进行计算.计算:(1)(a-b+c)2; (2)(1-2x+y)(1+2x-y).针对训练=1-4x2+4xy-y2.解:(1)原式=[(a-b)+c]2=(a-b)2+c2+2(a-b)c=a2-2ab+b2+c2+2ac-2bc;(2)原式=[1+(-2x+y)][1-(-2x+y)]=12-(-2x+y)2当堂练习2.下列计算结果为2ab-a2-b2的是( ) A.(a-b)2 B.(-a-b)2 C.-(a+b)2 D.-(a-b)21.运用乘法公式计算(a-2)2的结果是( )A.a2-4a+4 B.a2-2a+4 C.a2-4 D.a2-4a-4 AD3.运用完全平方公式计算:(1) (6a+5b)2=_______________;(2) (4x-3y)2=_______________ ;(3) (2m-1)2 =_______________;(4)(-2m-1)2 =_______________.36a2+60ab+25b216x2-24xy+9y24m2+4m+1 4m2-4m+14.由完全平方公式可知:32+2×3×5+52=(3+5)2=64,运用这一方法计算:4.3212+8.642×0.679+0.6792=________. 255.计算(1)(3a+b-2)(3a-b+2);(2)(x-y-m+n)(x-y+m-n).(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]解:(1)原式=[3a+(b-2)][3a-(b-2)]=(3a)2-(b-2)2=9a2-b2+4b-4. =(x-y)2-(m-n)2=x2-2xy+y2-m2+2mn-n2.6.若a+b=5,ab=-6, 求a2+b2,a2-ab+b2.7.已知x+y=8,x-y=4,求xy.解:a2+b2=(a+b)2-2ab=52-2×(-6)=37;a2-ab+b2=a2+b2-ab=37-(-6)=43.解:∵x+y=8, ∴(x+y)2=64,即x2+y2+2xy=64①;∵x-y=4, ∴(x-y)2=16,即x2+y2-2xy=16②;由①-②得4xy=48∴xy=12.课堂小结完全平方公式法则注意(a±b)2= a2 ±2ab+b21.项数、符号、字母及其指数2.不能直接应用公式进行计算的式子,可能需要先添括号变形成符合公式的要求才行常用结论3.弄清完全平方公式和平方差公式不同(从公式结构特点及结果两方面)a2+b2=(a+b)2-2ab=(a-b)2+2ab; 4ab=(a+b)2-(a-b)2.
第十四章 整式的乘法与因式分解14.2乘法公式第2课时1.理解并掌握完全平方公式的推导过程、结构特点、 几何解释.(重点)2.灵活应用完全平方公式进行计算.(难点)学习目标导入新课情境引入一块边长为a米的正方形实验田,因需要将其边长增加 b 米.形成四块实验田,以种植不同的新品种(如图). 用不同的形式表示实验田的总面积, 并进行比较. 直接求:总面积=(a+b)(a+b)间接求:总面积=a2+ab+ab+b2你发现了什么?(a+b)2=a2+2ab+b2讲授新课问题1 计算下列多项式的积,你能发现什么规律?(1) (p+1)2=(p+1)(p+1)= .p2+2p+1(2) (m+2)2=(m+2)(m+2)= .m2+4m+4(3) (p-1)2=(p-1)(p-1)= .p2-2p+1(4) (m-2)2=(m-2)(m-2)= .m2-4m+4问题2 根据你发现的规律,你能写出下列式子的答案吗?(a+b)2= .a2+2ab+b2(a-b)2= .a2-2ab+b2合作探究完全平方公式完全平方公式也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.简记为:“首平方,尾平方,积的2倍放中间”问题3 你能根据下图中的面积说明完全平方公式吗?设大正方形ABCD的面积为S.S= =S1+S2+S3+S4= .(a+b)2a2+b2+2abS1S2S3S4几何解释:=+++a2ababb2和的完全平方公式:a2−ab−b(a−b)=a2−2ab+b2 .=(a−b)2a−ba−bb(a−b)(a−b)2几何解释:差的完全平方公式:(a+b)2= a2+2ab+b2.(a-b)2=a2-2ab+b2.问题4 观察下面两个完全平方式,比一比,回答下列问题:1.说一说积的次数和项数.2.两个完全平方式的积有相同的项吗?与a,b有 什么关系?3.两个完全平方式的积中不同的是哪一项?与 a, b有什么关系?它的符号与什么有关? 公式特征:4.公式中的字母a,b可以表示数,单项式和多项式.1.积为二次三项式;2.积中两项为两数的平方和;3.另一项是两数积的2倍,且与两数中间的符号相同. 想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?(1)(x+y)2=x2 +y2(2)(x -y)2 =x2 -y2(3) (-x +y)2 =x2+2xy +y2(4) (2x+y)2 =4x2 +2xy +y2××××(x +y)2 =x2+2xy +y2(x -y)2 =x2 -2xy +y2 (-x +y)2 =x2 -2xy +y2 (2x +y)2 =4x2+4xy +y2例1 运用完全平方公式计算:解: (4m+n)2==16m2(1)(4m+n)2;(a +b)2= a2 + 2 ab + b2(4m)2+2•(4m) •n+n2+8mn+n2;(a - b)2 = a2 - 2 ab + b2y2解: =利用完全平方公式计算:(1)(5-a)2; (2)(-3m-4n)2;(3)(-3a+b)2.针对训练(3)(-3a+b)2=9a2-6ab+b2.解:(1)(5-a)2=25-10a+a2;(2)(-3m-4n)2=9m2+24mn+16n2;(1) 1022;解: 1022= (100+2)2=10000+400+4=10404.(2) 992.992= (100 –1)2=10000 -200+1=9801. 例2 运用完全平方公式计算:方法总结:运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式.利用乘法公式计算:(1)982-101×99;(2)20162-2016×4030+20152.针对训练=(2016-2015)2=1.解:(1)原式=(100-2)2-(100+1)(100-1)=1002-400+4-1002+1=-395;(2)原式=20162-2×2016×2015+20152例3 已知x-y=6,xy=-8.求: (1) x2+y2的值; (2)(x+y)2的值.=36-16=20;解:(1)∵x-y=6,xy=-8,(x-y)2=x2+y2-2xy,∴x2+y2=(x-y)2+2xy(2)∵x2+y2=20,xy=-8,∴(x+y)2=x2+y2+2xy=20-16=4.方法总结:本题要熟练掌握完全平方公式的变式:x2+y2=(x-y)2+2xy=(x+y)2-2xy,(x-y)2=(x+y)2-4xy.1.已知x+y=10,xy=24,则x2+y2=_____52变式:已知 则 _____982.如果x2+kx+81是运用完全平方式得到的结果, 则k=______ 8或-8 变式:如果x2+6x+m2是完全平方式,则m的值是_____3或-33.已知ab=2,(a+b)2=9,则(a-b)2的值为______变式:若题目条件不变,则a-b的值为_____±11a+(b+c) = a+b+c; a- (b+c) = a - b – c.a + b + c = a + ( b + c) ; a – b – c = a – ( b + c ) .去括号把上面两个等式的左右两边反过来,也就添括号:添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号(简记为“负变正不变”).知识要点添括号法则例5 运用乘法公式计算:(1) (x+2y-3)(x-2y+3) ; (2) (a+b+c)2.典例精析(2)原式 = [(a+b)+c]2 = x2-(2y-3)2 = x2-(4y2-12y+9)= x2-4y2+12y-9.= (a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2.方法总结:第1小题选用平方差公式进行计算,需要分组.分组方法是“符号相同的为一组,符号相反的为另一组”.第2小题要把其中两项看成一个整体,再按照完全平方公式进行计算.计算:(1)(a-b+c)2; (2)(1-2x+y)(1+2x-y).针对训练=1-4x2+4xy-y2.解:(1)原式=[(a-b)+c]2=(a-b)2+c2+2(a-b)c=a2-2ab+b2+c2+2ac-2bc;(2)原式=[1+(-2x+y)][1-(-2x+y)]=12-(-2x+y)2当堂练习2.下列计算结果为2ab-a2-b2的是( ) A.(a-b)2 B.(-a-b)2 C.-(a+b)2 D.-(a-b)21.运用乘法公式计算(a-2)2的结果是( )A.a2-4a+4 B.a2-2a+4 C.a2-4 D.a2-4a-4 AD3.运用完全平方公式计算:(1) (6a+5b)2=_______________;(2) (4x-3y)2=_______________ ;(3) (2m-1)2 =_______________;(4)(-2m-1)2 =_______________.36a2+60ab+25b216x2-24xy+9y24m2+4m+1 4m2-4m+14.由完全平方公式可知:32+2×3×5+52=(3+5)2=64,运用这一方法计算:4.3212+8.642×0.679+0.6792=________. 255.计算(1)(3a+b-2)(3a-b+2);(2)(x-y-m+n)(x-y+m-n).(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]解:(1)原式=[3a+(b-2)][3a-(b-2)]=(3a)2-(b-2)2=9a2-b2+4b-4. =(x-y)2-(m-n)2=x2-2xy+y2-m2+2mn-n2.6.若a+b=5,ab=-6, 求a2+b2,a2-ab+b2.7.已知x+y=8,x-y=4,求xy.解:a2+b2=(a+b)2-2ab=52-2×(-6)=37;a2-ab+b2=a2+b2-ab=37-(-6)=43.解:∵x+y=8, ∴(x+y)2=64,即x2+y2+2xy=64①;∵x-y=4, ∴(x-y)2=16,即x2+y2-2xy=16②;由①-②得4xy=48∴xy=12.课堂小结完全平方公式法则注意(a±b)2= a2 ±2ab+b21.项数、符号、字母及其指数2.不能直接应用公式进行计算的式子,可能需要先添括号变形成符合公式的要求才行常用结论3.弄清完全平方公式和平方差公式不同(从公式结构特点及结果两方面)a2+b2=(a+b)2-2ab=(a-b)2+2ab; 4ab=(a+b)2-(a-b)2.
相关资料
更多