- 浙教版数学九年级上册_3.3《垂径定理》教案 教案 3 次下载
- 浙教版数学九年级上册_3.4《圆心角》教案 教案 2 次下载
- 浙教版数学九年级上册_3.6《圆内接四边形》教案 教案 2 次下载
- 浙教版数学九年级上册_3.7《正多边形》教案 教案 2 次下载
- 浙教版九年级数学上册_《4.1 比例线段》教案 教案 2 次下载
数学九年级上册3.5 圆周角精品教案设计
展开《圆周角》教案
教学目标:
理解圆周角概念,理解圆周用与圆心角的异同;
掌握圆周角的性质和直径所对圆周角的特征;
能灵活运用圆周角的性质解决问题;
发现和证明圆周角定理;
会用圆周角定理及推论解决问题.
教学重点:
圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.
教学难点:
发现并证明圆周角定理.
教学过程:
一.创设情景
如图是一个圆柱形的海洋馆, 在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?
二、认识圆周角.
1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点?
2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.)
3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.
4.圆周角与圆心角的联系和区别是什么?
三、探究圆周角的性质.
1.在下图中,同弧所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想. 同弧所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想.
2.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示, 验证学生的发现.
四、证明圆周角定理及推论.
1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况?
2.学生自己画出同一条弧的圆心角和圆周角, 将他们画的图归纳起来, 共有三种情况:①圆心在圆周角的一边上; ②圆心在圆周角的内部; ③圆心在圆周角的外部.如下图
3.问题:在第一种情况中,如何证明上面探究中所发现的结论呢?另外两种情况如何证明呢?
4.怎样利用有上结论证明我们的第一个猜想:圆弧所对的圆周角相等?(利用圆弧所对的圆心角相等)
5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么?
6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗?
8.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
总结推论1:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(也是圆周角定理的逆定理,要通过圆心角来转换)
9.如图所示图中,∠AOB=180°则∠C等于多少度呢?从中你发现了什么?(推论2:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.可用圆周角定理说明.)
五.应用迁移,巩固提高.
1.求图中x的度数.
2.如图,⊙O的直径AB为10 cm,弦AC为6cm , ∠ACB的平分线交⊙O于D,求BC,AD,BD的长.
六. 小结:本节课你认识了什么?掌握了哪些定理?有什么收获?
人教版九年级上册24.1.1 圆优质教案设计: 这是一份人教版九年级上册24.1.1 圆优质教案设计,共5页。教案主要包含了内容和内容解析,目标和目标解析1.目标,教学问题诊断分析,教学过程设计,目标检测设计等内容,欢迎下载使用。
初中数学浙教版九年级上册3.5 圆周角教学设计: 这是一份初中数学浙教版九年级上册3.5 圆周角教学设计,共5页。
2021学年3.5 圆周角教学设计: 这是一份2021学年3.5 圆周角教学设计,共3页。教案主要包含了旧知回放等内容,欢迎下载使用。