七年级上册3.1.2 等式的性质教学设计
展开
这是一份七年级上册3.1.2 等式的性质教学设计,共5页。教案主要包含了新授,巩固练习,课堂小结,作业布置等内容,欢迎下载使用。
3.1.2《等式的性质》教案 教学内容 课本第81页至第82页. 教学目标 1.知识与技能 会利用等式的两条性质解方程. 2.过程与方法 利用天平,通过观察、分析得出等式的两条性质. 3.情感态度与价值观 培养学生参与数学活动的自信心、合作交流意识. 重、难点与关键 1.重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程. 2.难点:由具体实例抽象出等式的性质. 3.关键:了解和掌握等式的两条性质是掌握一元一次方程的解法的关键. 教具准备 多媒体课件. 教学过程 一、引入新课 1.什么是等式? 用等号来表示相等关系的式子叫等式. 我们可以估算出某些方程的解,但是仅依靠估算来解比较复杂的方程是很困难的.这一点上一节课我们已经体会到.因此,我们还要讨论怎样解方程.因为,方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质? 二、新授 探索等式性质. 观察课本图3.1-1,由它你能发现什么规律? 从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡. 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡. 等式就像平衡的天平,它具有与上面的事实同样的性质. 等的性质1:等式两边都加(或减)同一个数(或式子),结果相等. 例如等式:1+3=4,把这个等式两边都加上5结果仍是等式即1+3+5=4+5,把等式两边都减去5,结果仍是等式,即1+3-5=4-5. 怎样用式子的形式表示这个性质? 如果a=b,那么a±c=b±c. 运用性质1时,应注意等号两边都加上(或减去)同一个数或同一个整式才能保持所得结果仍是等式,否则就会破坏相等关系,例如,对于等式3+4=7,如果左边加上5,右边加上6,那么3+4+5≠7+6. 观察课本图3.1-2,由它你能发现什么规律? 可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还保持平衡. 类似可以得到等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等. 怎样用式子的形式表示这个性质? 如果a=b,那么ac=bc. 如果a=b,(c≠0),那么=. 性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母的),要注意与性质1的区别. 运用性质2时,应注意等式两边都乘以(或除以)同一个数,才能保持所得结果仍是等式,但不能除以0,因为0不能作除数. 例2:利用等式的性质解下列方程: (1)x+7=26; (2)-5x=20; (3)-x-5=4. 分析:解方程,就是把方程变形,变为x=a(a是常数)的形式. 在方程x+7=26中,要去掉方程左边的7,因此两边都减去7. 解:(1)根据等式性质1,两边同减7,得: x+7-7=26-7 于是 x=19 我们可以把x=19代入原方程检验,看看这个值能否使方程的两边相等,将x=19代入方程x+7=26的左边,得左边=19+7=26=右边,所以x=19是方程x+7=26的解. (2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以-5.解:根据等式性质2,两边都除以-5,得 于是x=-4 (3)分析:方程-x-5=4的左边的-5要去掉,同时还要把-x的系数化为1,如何去掉-5呢?根据两个互为相反数的和为0,所以应把方程两边都加上5. 解:根据等式性质1,两边都加上5,得 -x-5+5=4+5 化简,得-x=9 再根据等式性质2,两边同除以-(即乘以-3),得 -x·(-3)=9×(-3) 于是 x=-27 同学们自己代入原方程检验,看看x=-27是否使方程的两边相等. 三、巩固练习 课本第83页练习. 四、课堂小结 在学习本节内容时,要注意几个问题: 1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即:同时加或减,同时乘或除,不能漏掉一边. 2.等式变形时,两边加、减、乘、除的数或式必须相同. 3.利用性质2进行等式变形时,须注意除以的同一个数不能是0. 五、作业布置 课本第83,84页习题3.1第4、7、8题.
相关教案
这是一份人教版3.1.2 等式的性质教案设计,共5页。
这是一份人教版七年级上册3.1.2 等式的性质教学设计及反思,共5页。
这是一份初中数学人教版七年级上册3.1.2 等式的性质教案