- 2022八年级数学上册第15章轴对称图形和等腰三角形15.2线段的垂直平分线教案新版沪科版 教案 2 次下载
- 2022八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第1课时等腰三角形的性质定理及推论教案新版沪科版 教案 2 次下载
- 2022八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第2课时等腰三角形的判定定理及推论教案新版沪科版 教案 2 次下载
- 2022八年级数学上册第15章轴对称图形和等腰三角形15.4角的平分线第1课时角平分线的尺规作图教案新版沪科版 教案 2 次下载
- 2022八年级数学上册第15章轴对称图形和等腰三角形15.4角的平分线第2课时角平分线的性质及判定教案新版沪科版 教案 2 次下载
2021学年15.3 等腰三角形第3课时教学设计
展开15.3等腰三角形
第3课时直角三角形中30°角的性质定理
教学目标
【知识与能力】
1.理解并掌握含30°角的直角三角形的性质定理;
2.能灵活运用含30°角的直角三角形的性质定理解决有关问题;
3. 经历“探索──发现──猜想──证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.培养学生用规范的数学语言进行表达的习惯和能力。
【过程与方法】
鼓励学生积极参与数学活动,激发学生的好奇心和求知欲。
【情感态度价值观】
让学生体验数学活动中的探索与创新、感受数学的严谨性。
教学重难点
【教学重点】
含30°角的直角三角形的性质定理。
【教学难点】
运用含30°角的直角三角形的性质定理解决有关问题。
课前准备
课件、教具等。
教学过程
一、情境导入
问题:
1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系?
2.用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现?
今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.
二、合作探究
探究点:含30°角的直角三角形的性质
【类型一】利用含30°角的直角三角形的性质求线段长
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是( )
A.3cm B.6cm C.9cm D.12cm
解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D.
方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.
例2 在△ABC中,AB=AC=10cm,BD是高,且∠ABD=30°,则CD=________.
解析:因为三角形的高相对于三角形有三种情况:①在三角形的内部;②在三角形的外部;③在三角形的边上.因为此三角形为等腰三角形,第三种情况可以排除.故应分两种情况讨论:如图甲,当△ABC为锐角三角形时,由BD是高,根据直角三角形的性质易得AD=AB=5cm,CD=AC-AD=5cm;如图乙,当△ABC为钝角三角形时,易得AD=AB=5cm,CD=AC+AD=15cm.故答案为5cm或15cm.
方法总结:此题比较简单,解答此题时要注意分类讨论,不要漏解.
【类型二】与角平分线或垂直平分线性质的综合运用
例3 如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=3,则PD等于( )
A.3 B.2 C.1.5 D.1
解析:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠CPO,∴∠PCE=∠BOP+∠CPO=∠BOP+∠AOP=∠AOB=30°.又∵PC=3,∴PE=PC=×3=1.5.∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=1.5.故选C.
方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.
【类型三】利用含30°角的直角三角形的性质探究线段之间的倍、分关系
例4 如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,过点D作DE⊥AB.DE恰好是∠ADB的平分线.CD与DB有怎样的数量关系?请说明理由.
解析:由条件先证△AED≌△BED,得出∠BAD=∠CAD=∠B,求得∠B=30°,即可得到CD=DB.
解:CD=DB.理由如下:∵DE⊥AB,∴∠AED=∠BED=90°.∵DE是∠ADB的平分线,∴∠ADE=∠BDE.又∵DE=DE,∴△AED≌△BED(ASA),∴AD=BD,∠DAE=∠B.∵∠BAD=∠CAD=∠BAC,∴∠BAD=∠CAD=∠B.∵∠BAD+∠CAD+∠B=90°,∴∠B=∠BAD=∠CAD=30°.在Rt△ACD中,∵∠CAD=30°,∴CD=AD=BD,即CD=DB.
方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.
【类型四】利用含30°角的直角三角形解决实际问题
例5 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC=50m,AB=40m,∠BAC=150°,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?
解析:作BD⊥CA交CA的延长线于点D.在Rt△ABD中,利用30°角所对的直角边是斜边的一半求BD,即△ABC的高.运用三角形面积公式计算面积求解.
解:如图所示,作BD⊥CA于D点.∵∠BAC=150°,∴∠DAB=30°.∵AB=40m,∴BD=AB=20m,∴S△ABC=×50×20=500(m2).已知这种草皮每平方米a元,所以一共需要500a元.
方法总结:解此题的关键在于作出CA边上的高,根据相关的性质推出高BD的长度,正确的计算出△ABC的面积.
三、板书设计
直角三角形中30°角的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
教学反思
本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.
沪科版八年级上册15.4 角的平分线第2课时教案设计: 这是一份沪科版八年级上册15.4 角的平分线第2课时教案设计,共5页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。
2021学年15.4 角的平分线第1课时教学设计: 这是一份2021学年15.4 角的平分线第1课时教学设计,共4页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。
数学第15章 轴对称图形和等腰三角形15.3 等腰三角形第2课时教学设计及反思: 这是一份数学第15章 轴对称图形和等腰三角形15.3 等腰三角形第2课时教学设计及反思,共3页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。