初中数学第二十一章 一次函数综合与测试当堂检测题
展开
这是一份初中数学第二十一章 一次函数综合与测试当堂检测题
八年级数学下册第二十一章一次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)2、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=43、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能4、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )A. B.C. D.5、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有( )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个6、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.47、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )A.x2 C.x08、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )A. B.C. D.9、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )A.x≥2 B.x≤2 C.x≥3 D.x≤310、若点(-3,y1)、(2,y2)都在函数y=-4x+b的图像上,则y1与y2的大小关系( )A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一次函数和的图象交于点,则不等式的解集是______.2、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.3、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.4、像y=x+1,s=-3t+1这些函数解析式都是常数k与自变量的______与常数b的______的形式.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做______函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.三、解答题(5小题,每小题10分,共计50分)1、已知一次函数的图象与轴交于点,与轴交于点(1)求、两点的坐标;(2)画出函数的图象2、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为 km;(2)两车经过 h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.3、已知直线与x轴交于点,与y轴相交于点,直线与y轴交于点C,与x轴交于点D,连接BD.(1)求直线的解析式;(2)直线上是否存在一点E,使得,若存在求出点E的坐标,若不存在,请说明理由.4、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.5、已知一次函数的图象经过点和.(1)求此一次函数的表达式;(2)点是否在直线AB上,请说明理由.-参考答案-一、单选题1、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.2、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解: 点K为直线l:y=2x+4上一点,设 将点K向下平移2个单位,再向左平移a个单位至点K1, 将点K1向上平移b个单位,向右平1个单位至点K2, 点K2也恰好落在直线l上, 整理得: 故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.3、A【解析】【分析】由 可得一次函数的性质为随的增大而增大,从而可得答案.【详解】解:点和点是一次函数图象上的两点,, 随的增大而增大, 即一定为正数,故选A【点睛】本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.4、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.【详解】A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;故选:D.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴=50x,∴甲车的速度为,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;设,∴,∴,∴,∵,∴,即甲行驶4小时,乙追上甲,∴③正确;故选C.【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.6、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.7、A【解析】【分析】y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.【详解】解:∵一次函数y=f(x)的图象经过点(2,0),∴如果y>0,则x<2,故选:A.【点睛】本题考查一次函数的图象,数形结合是解题的关键.8、C【解析】【分析】由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.【详解】解:令直线中,得到,故,令直线中,得到,故,由勾股定理可知:,∵,且,∴,,过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:∵为等边三角形,∴,∴,∴,∴,∴,同理,∵为等边三角形,∴,,∴,∴,∴,设直线CD的解析式为:y=kx+b,代入和,得到:,解得,∴CD的解析式为:,与直线联立方程组,解得,故E点坐标为,故选:C.【点睛】本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.9、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.10、A【解析】【分析】根据一次函数的性质得出y随x的增大而减小,进而求解.【详解】由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,∵-3<2,∴y1>y2,故选:A.【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.二、填空题1、x≥1【解析】【分析】结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.【详解】解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),∴当x≥1时,kx+b≥mx+n,∴不等式的解集为x≥1.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.3、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.4、 积 和 一次【解析】略5、【解析】【分析】首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.【详解】解:如图,点的坐标为,点的坐标为,,,则.△是等腰直角三角形,,.点的坐标是.同理,在等腰直角△中,,,则.点、均在一次函数的图象上,,解得,,该直线方程是.点,的横坐标相同,都是3,当时,,即,则,.同理,,,,当时,,即点的坐标为,.故答案为,.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.三、解答题1、 (1),(2)见解析【解析】【分析】(1)分别令,即可求得点的坐标;(2)根据两点,作出一次函数的图象即可(1)令,则,即,令,则,即(2)过,作直线的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.2、 (1)900(2)4(3)快车的速度为150km/h,慢车的速度为75km/h(4)y=225x﹣900,自变量x的取值范围是4≤x≤6【解析】【分析】(1)由函数图象可以直接求出甲乙两地之间的距离;(2)由函数图象的数据就即可得出;(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.(1)根据图象,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得,解得:k=225b=900,则y=225x﹣900,自变量x的取值范围是4≤x≤6.【点睛】本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.3、 (1)(2)或【解析】【分析】(1)根据待定系数法求一次函数解析式即可;(2)先求,根据求得,进而根据,进而将的纵坐标代入,即可求得的坐标.(1)直线与x轴交于点,与y轴相交于点,设直线的解析式为则解得直线的解析式为(2)与y轴交于点C,与x轴交于点D,令,则,即令,则,即,,将代入解得将代入解得或【点睛】本题考查了待定系数法求一次函数解析式,求两直线与坐标轴围成的三角形面积,根据一次函数解析式求得坐标轴的交点坐标是解题的关键.4、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.5、 (1)一次函数的表达式为;(2)点在直线AB上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y=kx+b得到关于k、b的方程组,然后解方程求出k与b的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将和代入,得,解得,,∴一次函数的表达式为(2)解:点C在直线AB上,理由:当时,,∴点在直线AB上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.
相关试卷
这是一份八年级下册第二十一章 一次函数综合与测试课时练习,共28页。试卷主要包含了如图所示,直线分别与轴,一次函数y=mx﹣n等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共34页。试卷主要包含了若一次函数等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试习题,共28页。