|试卷下载
终身会员
搜索
    上传资料 赚现金
    精品试卷冀教版八年级数学下册第二十一章一次函数难点解析试卷(无超纲)
    立即下载
    加入资料篮
    精品试卷冀教版八年级数学下册第二十一章一次函数难点解析试卷(无超纲)01
    精品试卷冀教版八年级数学下册第二十一章一次函数难点解析试卷(无超纲)02
    精品试卷冀教版八年级数学下册第二十一章一次函数难点解析试卷(无超纲)03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题

    展开
    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共34页。试卷主要包含了若一次函数等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是( )
    A. B.
    C. D.
    2、如图,直线与x轴交于点B,与y轴交于点C,点,D为线段的中点,P为y轴上的一个动点,连接、,当的周长最小时,点P的坐标为( )

    A. B. C. D.
    3、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
    4、如图,甲乙两人沿同一直线同时出发去往B地,甲到达B地后立即以原速沿原路返回,乙到达B地后停止运动,已知运动过程中两人到B地的距离y(km)与出发时间t(h)的关系如图所示,下列说法错误的是(  )

    A.甲的速度是16km/h
    B.出发时乙在甲前方20km
    C.甲乙两人在出发后2小时第一次相遇
    D.甲到达B地时两人相距50km
    5、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
    A.且 B.且
    C.且 D.且
    6、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    7、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )

    A.(2,2) B.(,) C.(,) D.(,)
    8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )

    A. B. C. D.
    9、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是( ).

    A.两车出发时相遇 B.甲、乙两地之间的距离是
    C.货车的速度是 D.时,两车之间的距离是
    10、下列函数中,一次函数是( )
    A. B. C. D.(m、n是常数)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做___.
    2、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
    3、已知:直线与直线的图象交点如图所示,则方程组的解为______.

    4、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于人且不超过人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的倍,甲车间与丙车间每个工人的日生产量之和为件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的且不超过件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.
    5、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.

    三、解答题(5小题,每小题10分,共计50分)
    1、直线,与直线相交于点.

    (1)求直线的解析式;
    (2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.
    ①当时,直接写出区域内的整点个数;
    ②若区域内的整点恰好为2个,结合函数图象,求的取值范围.
    2、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.

    (1)求点的坐标;
    (2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
    (3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
    3、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:

    A种产品
    B种产品
    成本价(元/件)
    400
    300
    销售价(元/件)
    560
    450
    (1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
    (2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
    4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:

    (1)货车的速度为______km/h,轿车的速度为______km/h;
    (2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
    (3)货车出发______h,与轿车相距30km.
    5、如图,直线l经过点A(﹣1,﹣2)和B(0,1).

    (1)求直线l的函数表达式;
    (2)线段AB的长为_____;
    (3)在y轴上存在点C,使得以A、B、C为顶点的三角形是以AB为腰的等腰三角形,请直接写出点C的坐标.

    -参考答案-
    一、单选题
    1、A
    【解析】

    2、A
    【解析】
    【分析】
    作点关于轴的对称点,连接,交轴于点,则,进而根据对称性求得当点P与重合时,的周长最小,通过求直线的解析式,即可求得点的坐标
    【详解】
    解:如图,作点关于轴的对称点,连接,交轴于点,则,连接,

    的周长,点是定点,则的长不变,
    当重合时,的周长最小,
    由,令,令,则

    是的中点

    ,点是关于轴对称的点

    设直线的解析式为:,将,代入,

    解得
    直线的解析式为:
    令,则

    故选A
    【点睛】
    本题考查了轴对称的性质求最值,求一次函数解析式,求直线与坐标轴的交点,求线段中点坐标,掌握根据轴对称的性质求线段和的最值是解题的关键.
    3、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    4、D
    【解析】
    【分析】
    由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.
    【详解】
    解:由图可知:甲10小时所走路程是80×2=160(km),
    ∴甲的速度是16km/h,故A正确,不符合题意;
    ∵出发时甲距B地80千米,乙距B地60千米,
    ∴发时乙在甲前方20km,故B正确,不符合题意;
    由图可得乙的速度是60÷10=6(km/h),
    ∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),
    即甲2小时比乙多走20km,
    ∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;
    ∵甲5小时达到B地,此时乙所走路程为5×6=30(km),
    ∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.
    5、D
    【解析】
    【分析】
    根据一次函数图象与系数的关系解答即可.
    【详解】
    解:一次函数、是常数,的图象不经过第三象限,
    且,
    故选:D.
    【点睛】
    本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    6、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    7、C
    【解析】
    【分析】
    先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
    【详解】
    ∵∠OBA=90°,A(4,4),且,点D为OB的中点,
    ∴点D(2,0),AC=1,BC=3,点C(4,3),
    设直线AO的解析式为y=kx,
    ∴4=4k,
    解得k=1,
    ∴直线AO的解析式为y=x,
    过点D作DE⊥AO,交y轴于点E,交AO于点F,
    ∵∠OBA=90°,A(4,4),
    ∴∠AOE=∠AOB=45°,
    ∴∠OED=∠ODE=45°,OE=OD,
    ∴DF=FE,
    ∴点E是点D关于直线AO的对称点,
    ∴点E(0,2),
    连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
    设CE的解析式为y=mx+n,

    ∴,
    解得,
    ∴直线CE的解析式为y=x+2,
    ∴y=14x+2y=x,
    解得,
    ∴使四边形PDBC周长最小的点P的坐标为(,),
    故选C.
    【点睛】
    本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
    8、C
    【解析】
    【分析】
    求出点A、点坐标,求出长即可求出点的坐标.
    【详解】
    解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
    即,,;
    以点为圆心、长为半径画弧,与轴正半轴交于点,
    故,则,
    点C的坐标为;
    故选:C
    【点睛】
    本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
    9、D
    【解析】
    【分析】
    根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.
    【详解】
    解:根据函数图象可知,当时,,总路程为360km,
    所以,轿车的速度为,货车的速度为:
    故A,B,C正确
    时,轿车的路程为,货车的路程为,
    则两车的距离为
    故D选项不正确
    故选D
    【点睛】
    本题考查了一次函数的应用,从图象上获取信息是解题的关键.
    10、B
    【解析】
    【分析】
    根据一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数逐一判断即可.
    【详解】
    解:A.右边不是整式,不是一次函数,不符合题意;
    B.y=-2x是一次函数,符合题意;
    C.y=x2+2中自变量的次数为2,不是一次函数,不符合题意;
    D.y=mx+n(m,n是常数)中m=0时,不是一次函数,不符合题意;
    故选:B.
    【点睛】
    本题考查一次函数的定义,解题的关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.
    二、填空题
    1、待定系数法
    【解析】

    2、 一次 任意实数
    【解析】

    3、
    【解析】
    【分析】
    根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.
    【详解】
    解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),
    ∴方程组的解为.
    故答案为.
    【点睛】
    本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.
    4、21
    【解析】
    【分析】
    根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件,转化为只含有的方程,进而根据因式分解化简得,根据不等式求得的范围,根据是整数,即可求得的值,进而求得,根据题意列出代数式,并根据一次函数的性质求得当时,取得最大值,即可求得的值,即可解决问题.
    【详解】
    根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则
    ,,












    解得

    是整数,即是整数


    设甲、丙两车间当日生产量之和为:


    ,则当最大时,取得最大值






    时,取得最大值
    此时
    故答案为:21
    【点睛】
    本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.
    5、
    【解析】
    【分析】
    利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.
    【详解】
    解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,
    ∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,
    故答案为x≥2.
    【点睛】
    本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
    三、解答题
    1、 (1)直线为;
    (2)①当时,整点个数为1个,为;②的取值范围为或
    【解析】
    【分析】
    (1)根据待定系数法求得即可;
    (2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;
    ②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.
    (1)
    解:直线过点.

    直线为.
    (2)
    解:①当时,,把代入得,
    解得:,

    如图1,

    区域内的整点个数为1个,为.
    ②如图2,若,

    当直线过,时,.
    当直线过,时,.

    如图3,若,

    当直线过,时,.
    当直线过,时,.

    综上,若区域内的整点恰好为2个,的取值范围为或.
    【点睛】
    此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.
    2、 (1)
    (2)
    (3)存在,,
    【解析】
    【分析】
    (1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;
    (2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;
    (3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.
    (1)
    直线,当时,;
    当时,则,
    解得,
    ,,
    直线经过点,

    直线的解析式为,
    当时,则,
    解得,

    (2)
    轴于点,交直线于点,且点的横坐标为,
    ,,
    如图1,点在轴的左侧,则,
    ∵PQ=-t+4-(2t+4)=-3t,

    如图2,点在轴的右侧,则,


    综上所述,关于的函数解析式为.

    (3)
    存在,
    如图3,连接,交轴于点,,作轴于点,
    点在线段上,且,
    12×(-3t)(4-t)=152,
    整理得或(不符合题意,舍去),
    ,,
    点为的中点,




    ∵∠BPM+2∠ABO=90°,


    ,,,
    ∴OP=22+12=5,



    ∴(55OF)2+(5)2=OF2,
    解得,

    设直线的解析式为,则,
    解得,
    直线的解析式为,
    由得,

    设直线的解析式为,则,
    解得,
    直线的解析式为,

    ∴MR//OP,
    设直线的解析式为,则,
    解得,
    直线的解析式为,
    当时,则,
    解得,
    点的坐标为,.

    【点睛】
    此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.
    3、 (1)A种产品生产400件,B种产品生产200件
    (2)A种产品生产1000件时,利润最大为460000元
    【解析】
    【分析】
    (1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
    (2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
    (1)
    解:设A种产品生产x件,则B种产品生产(600-x)件,
    由题意得:,
    解得:x=400,
    600-x=200,
    答:A种产品生产400件,B种产品生产200件.
    (2)
    解:设A种产品生产x件,总利润为w元,由题意得:

    由,
    得:,
    因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
    【点睛】
    本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    4、 (1)80,100
    (2)当时,;当时,;当时,;当时,,图见解析
    (3)或
    【解析】
    【分析】
    (1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;
    (2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;
    (3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.
    (1)
    解:由图象可得:经过两个小时,两车相遇,
    设货车的速度为,则轿车的速度为,
    ∴,
    解得:,,
    ∴货车的速度为,则轿车的速度为,
    故答案为:80;100;
    (2)
    当时,图象经过,点,
    设直线解析式为:,代入得:

    解得:,
    ∴当时,;
    分钟小时,
    ∵两车相遇后休息了24分钟,
    ∴当时,;
    当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,
    轿车到达甲地还需要:,
    货车到达乙地还需要:,
    ∴当时,;
    当时,;
    当时,;
    当时,;
    当时,;
    ∴函数图象分别经过点,,,
    作图如下:

    (3)
    ①当时,令可得:

    解得:;
    ②当时,令可得:

    解得:;
    ③当时,令可得:

    解得::,不符合题意,舍去;
    综上可得:货车出发或,与轿车相距30km,
    故答案为:或.
    【点睛】
    题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.
    5、 (1)y=3x+1
    (2)
    (3)C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).
    【解析】
    【分析】
    (1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l的函数表达式为y=3x+1;
    (2)根据题意由A(﹣1,﹣2),B(0,1),可得AB=;
    (3)由题意设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,即=,可解得C(0,﹣5);②若AB=BC,得=|m﹣1|,解得C(0,﹣+1)或(0,+1).
    【详解】
    解:(1)设直线l的函数表达式为y=kx+b,
    将A(﹣1,﹣2)和B(0,1)代入得:,
    解得,
    ∴直线l的函数表达式为y=3x+1;
    (2)∵A(﹣1,﹣2),B(0,1),
    ∴AB==;
    故答案为:.
    (3)设C(0,m),则AC=,BC=|m﹣1|,
    ①若AB=AC,如图:

    ∴=,
    解得m=1(与B重合,舍去)或m=﹣5,
    ∴C(0,﹣5);
    ②若AB=BC,如图:

    ∴=|m﹣1|,
    解得m=﹣+1或m=+1,
    ∴C(0,﹣+1)或(0,+1),
    综上所述,以A、B、C为顶点的三角形是以AB为腰的等腰三角形,则C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).
    【点睛】
    本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.

    相关试卷

    冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共30页。试卷主要包含了点A,若点等内容,欢迎下载使用。

    初中数学第二十一章 一次函数综合与测试同步测试题: 这是一份初中数学第二十一章 一次函数综合与测试同步测试题,共31页。试卷主要包含了已知点,都在直线上,则,一次函数的图象一定经过等内容,欢迎下载使用。

    数学八年级下册第二十一章 一次函数综合与测试课后复习题: 这是一份数学八年级下册第二十一章 一次函数综合与测试课后复习题,共30页。试卷主要包含了已知点,都在直线上,则,一次函数的大致图象是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map