终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    沪科初中数学八下《19.2平行四边形》word教案 (6)

    立即下载
    加入资料篮
    沪科初中数学八下《19.2平行四边形》word教案 (6)第1页
    沪科初中数学八下《19.2平行四边形》word教案 (6)第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版八年级下册19.2 平行四边形教案设计

    展开

    这是一份沪科版八年级下册19.2 平行四边形教案设计,共5页。教案主要包含了内容和内容解析,目标和目标解析,教学问题诊断分析,教学支持条件分析,教学过程设计,目标检测设计等内容,欢迎下载使用。
    19.2 平行四边形一、内容和内容解析平行四边形是空间与图形领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用.平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形.本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质.关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复.本节课,平行四边形的定义采用的是内涵定义法,即种概念+属差=被定义的概念.在平行四边形的定义中,大前提是四边形(种概念),条件是两组对边分别平行(属差)两组对边分别平行是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在.平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性.同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质.关于平行四边形边、角的性质,平行四边形的对边相等相对于定义中的两组对边分别平行,是由位置关系向数量关系的一种延伸;平行四边形的对角相等相对于两组对边分别平行,是由相邻的角互补产生的思维的一种深化.同时,两条性质的探究,经历的是感知、猜想、验证、概括、证明的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段.在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为核心概念当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位.教学重点:平行四边形的概念和性质.二、目标和目标解析(1)教学目标:掌握平行四边形的概念及性质.学会用分析法、综合法解决问题.体会特殊与一般的辩证关系.逐步养成良好的个性思维品质.(2)目标解析:使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.三、教学问题诊断分析学生对平行四边形概念的理解,需要建立在对概念的内涵定义法的理解之上,而学生在小学学习平行四边形时,只停留在对图形的识别上,缺乏这方面的训练.因此,学生极易把平行四边形的概念当作已知,而忽视平行四边形与四边形概念的内涵包容、共性与个性以及它们的从属关系,容易造成只知道平行四边形的特性,而不知它是四边形的现象.所以,我们应在平行四边形概念的教学时,有针对性地设计揭示概念内涵的说明过程.平行四边形性质的证明过程,一般学生都能理解,但对为什么要添加辅助线,又怎么想到作对角线,理解起来会有些困难.这属于思想方法方面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我们进行精心的设计,充分展示将平行四边形转化为三角形问题的过程,讲清楚添加辅助线的目的、作用和意义.教学难点:平行四边形的概念;平行四边形性质证明过程中蕴涵的基本思想方法.四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式.在教学过程中,通过设置带有启发性和思考性的问题串,创设问题情景,启发学生思维.利用计算机和几何画板软件,并结合学生亲自动手操作测量,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计(一)创设情境,引入概念问题1:请同学们欣赏一组日常生活中的图片,你能发现它们都有什么共同特点?    教师用电脑展示,学生观察,寻找共性. 【设计意图】从学生熟悉的实际问题出发,创设情境,提出问题,可以激发学生强烈的好奇心和求知欲,使学生在观察、思考的活动中,对平行四边形先有初步的感性认识.教师通过电脑,演示从实物中抽象出平行四边形图形的过程.【设计意图】从实际问题中抽出几何图形——平行四边形,让学生经历将实际问题抽象为数学问题的过程,进一步强化学生对平行四边形图形的认识.问题2:你还能举出一些例子吗?【设计意图】通过举例,可以让学生认识到平行四边形在生活、生产中的广泛应用,知道本节课的研究具有实际意义,从而激发学生的学习兴趣,引出本节课主题.问题3:一个四边形具备了什么特征才是平行四边形呢?教师引导学生观察、总结共同特点:两组对边平行.【设计意图】让学生能够描述出平行四边形的特征,弄清四边形与平行四边形的从属关系,明确四边形与平行四边形的异同点,为概念的形成做好铺垫.(二)观察感知,形成概念 问题4:通过比较四边形和平行四边形的不同,如果从对边的位置关系入手,你认为什么样的四边形是平行四边形呢?教师引导学生明确平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.【设计意图】问题中带有提示,降低了难度.问题5:怎样表示平行四边形?教师介绍平行四边形的表示方法.【设计意图】加深对平行四边形概念的理解. 问题6:如果已知一个四边形是平行四边形,可以得到哪些结论?        教师出示问题:(1)四边形是平行四边形,                (2)在中,已知,求其余三个角的度数.设计意图】平行四边形的定义不仅是平行四边形的一个判定方法,还是平行四边形的一个性质(三)引导实验,探索新知问题7:我们已经知道平行四边形是特殊的四边形,由定义可知平行四边形的对边平行.除此之外,你还能发现平行四边形的边、角之间存在什么结论吗?教师提出问题,学生观察猜想.【设计意图】加强学生对平行四边形的感性认识,培养敢于猜想的意识.教师引导学生以小组合作的方式,先利用定义画一个平行四边形,再测量其四条边的长度、四个内角的度数,填写表格,之后,让学生汇报研究的结果.教师利用几何画板的度量工具进行演示验证结果.得出平行四边形的性质:平行四边形的两组对边分别相等;平行四边形的两组对角分别相等.【设计意图】使学生不仅感受到亲自动手测量的乐趣,而且通过观察几何画板动态演示的过程,进一步强化对平行四边形的直观感知,在解决问题过程中体会合情推理的作用,从而学会观察、猜想、验证等解决问题的方法.问题8:所有的平行四边形是否都具有上述的结论,你能利用学过的知识证明这个结论吗?教师提出问题,进行适当引导,让学生自己发现:证明线段相等、角相等通常是利用全等的方法,而图形中没有三角形,只有四边形,可见需添加辅助线,构造三角形,将四边形转化为三角形来解决,使难点得以突破.【设计意图】使学生体会几何论证是探究性活动的自然延续和必然发展,感受到数学结论的确定性和证明的必要性.(四)巩固概念,应用拓问题9:基础训练: (1)在中,已知,求其余三个角的度数.(2)在中,已知= 6 cm, = 4 cm,求的周长.        (3)在中,已知 = 3 cm,则=     =      =      .(4)在平行四边形中,有如下结论:对角相等;对角互补;邻角互补;内角和为360°.则正确结论的序号是        .(把你认为正确结论的序号都填上)(5)如图,中,于点,求的大小.          问题10:解决实际问题:小明用一根36米长的绳子围成了一个平行四边形的场地,其中一条边长8米,其他三条边各长多少?问题11:灵活运用:如图,在四边形中,BD为对角线,点在边上,且平分         (1)你发现图中有哪些线段是相等的?(2)求证:【设计意图】通过一系列的练习,可以实现知识向能力的转化.学生在尝试运用平行四边形的概念和性质解决上述问题的过程中,进一步加深了对平行四边形概念的理解.同时训练了学生在表达问题的解决方案时,应清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据.(五)归纳小结,反思提高问题12:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法.【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对平行四边形的概念有一个整体全面认识的同时,也使学生养成良好的学习习惯.布置作业.六、目标检测设计1.在中,若=70°,则的度数是(   ).(A)130°   (B)110°   (C)70°   (D)35°【设计意图】考查平行四边形的对角相等的知识.2.在中,若两个内角的度数比为12,则中较小的内角的大小是(   ).(A)45°    (B)60°    (C)90°   (D)120°【设计意图】考查平行四边形对边平行的知识,以及利用设未知数列方程的方法,解决几何中的计算问题.3.已知的周长为40 cm,若=2 cm,则的长为       cm.【设计意图】考查平行四边形的周长与边长的关系,以及根据已知条件寻找等量关系,建立方程组解决几何中的计算问题.4.如图,分别过的顶点作它的对边的平行线,围成,则图中共有      个平行四边形.【设计意图】考查利用平行四边形的定义判定一个四边形是否为平行四边形.   5.如图,已知对角线上的两点,若(1)求证:(2)判断四边形是否为平行四边形,并证明你的结论.【设计意图】主要考查三角形全等的判定和性质、平行四边形的定义和性质以及转化的思想方法.6.如图,中,点在边上,以为折痕,将向上翻折,点正好落在边上的点处,若的周长为8,的周长为22,求的长.【设计意图】主要结合全等三角形的性质,考查了平行四边形的性质以及利用整体思想解决问题的方法.  

    相关教案

    2020-2021学年19.2 平行四边形教案:

    这是一份2020-2021学年19.2 平行四边形教案,共4页。教案主要包含了引言,新授等内容,欢迎下载使用。

    初中数学沪科版八年级下册19.2 平行四边形教案设计:

    这是一份初中数学沪科版八年级下册19.2 平行四边形教案设计,共3页。

    数学八年级下册19.2 平行四边形教案设计:

    这是一份数学八年级下册19.2 平行四边形教案设计,共2页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map