湘教版七年级下册3.1 多项式的因式分解教学设计及反思
展开多项式的因式分解
教学目标
1、知识与技能:使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
2、过程与方法:通过观察,发现分解因式与整式乘法的关系。
3、情感态度与价值观:培养学生的观察能力和语言概括能力.
教学重点
1.理解因式分解的意义.
2.识别分解因式与整式乘法的关系.
教学难点
通过观察,归纳分解因式与整式乘法的关系.
教学目标
一、预学
(一)、创设问题情境,引入新课
计算(a+b)(a-b)
a2-b2=(a+b)(a-b)成立吗?那么如何去推导呢?
这就是我们即将学习的内容:因式分解的问题.
(二)、讲授新课
1.讨论6能被2整除吗?你是怎样想的?与同伴交流.
6能被2整除.
因为6=3×2
其中有一个因数为2,所以6能被2整除..6还能被哪些正整数整除?
还能被3整除.
从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.
二.探究
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.
观察x2-x与x2-1这两个代数式.
三、精导
(1)计算下列各式:
①(m+4)(m-4)=__________; ②(y-3)2=__________;
③3x(x-1)=__________; ④m(a+b+c)=__________;
⑤a(a+1)(a-1)=__________.
(2)根据上面的算式填空:
①3x2-3x=( )( ); ②m2-16=( )( );
③ma+mb+mc=( )( ); ④y2-6y+9=( )2.
能分析一下两个题中的形式变换吗?
在(1)中,等号左边都是乘积的形式,等号右边都是多项式;
在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.
在(1)中我们知道从左边推右边是整式乘法;
在(2)中由多项式变成整式乘积的形式是因式分解.
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式
四、提升
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反.
由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.
如:(1)m(a+b+c)=ma+mb+mc (2)ma+mb+mc=m(a+b+c)
联系:等式(1)和(2)是同一个多项式的两种不同表现形式.
区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.
等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.
所以,因式分解与整式乘法是互逆方向的变形.
5.例题:下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;
(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);
(4)x2-3x+2=x(x-3)+2.
(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解;
(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
(3)和(2)相同,是因式分解;
(4)不是因式分解,左右都是和形式。
例 解方程:x2-1=0
解 把方程左端的多项式因式分解,得
(x-1)(x+1)=0
从而得
x+1=0或x-1=0,
即 x=-1或x=1.
因此方程的解是x=-1或x=1.
五、课堂练习 连一连
解:
六.课时小结
本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是互逆方向的变形.
2021学年3.1 投影教学设计: 这是一份2021学年3.1 投影教学设计,共6页。
数学七年级下册6.1.3众数教学设计: 这是一份数学七年级下册6.1.3众数教学设计,共4页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版七年级下册6.1.3众数教学设计: 这是一份初中数学湘教版七年级下册6.1.3众数教学设计,共2页。教案主要包含了复习.,极差.,方差.,作业.,小结.等内容,欢迎下载使用。