![苏科初中数学九上《2.4 圆周角》word教案 (5)01](http://img-preview.51jiaoxi.com/2/3/12442937/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学苏科版九年级上册2.4 圆周角教学设计及反思
展开圆周角
二、知识准备复习巩固
1、 叫圆心角。
2、在同圆或等圆中,圆心角的度数等于它所对的 度数。
三、学习内容
活动一 操作与思考
如图,点A在⊙O外,点B1 、B2 、B3在⊙O上,点C在⊙O内,度量∠A、∠B1 、∠B2 、∠B3 、∠C的大小,你能发现什么?
∠B1 、∠B2 、∠B3有什么共同的特征?_________________。
归纳得出结论,顶点在_______,并且两边________________________的角叫做圆周角。
强调条件:①_______________________,②___________________________。
识别图形:判断下列各图中的角是否是圆周角?并说明理由.
活动二 观察与思考
如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC的度数.
通过计算发现:∠BAC=__∠BOC.试证明这个结论:(学生完成)
活动三 思考与探索
1.如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个?请在图中画出BC所对的圆心角和圆周角,并与同学们交流。
2.思考与讨论(1)观察上图,在画出的无数个圆周角中,这些圆周角与圆心O有几种位置关系?
(2)设BC所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O与∠BAC还有哪几种位置关系?对于这几种位置关系,结论∠BAC=∠BOC还成立吗?试证明之.
通过上述讨论发现:___________________________________。
3.尝试练习
(1)如图,点A、B、C、D在⊙O上,点A与点D在点B、C所在直线的同侧,∠BAC=350
(1)∠BDC=_______°,理由是_______________________.
(2)∠BOC=_______°,理由是_______________________.
(2)如图,点A、B、C在⊙O上,
(1) 若∠BAC=60°,求∠BOC=______°;(2) 若∠AOB=90°,求∠ACB=______°.
4、例题:
如图,点A、B、C在⊙O上,点D在圆外,CD、BD分别交⊙O于点E、F,比较∠BAC与∠BDC的大小,并说明理由。
四、知识梳理
1、顶点在圆上,并且两边和圆相交的角叫做圆周角;
2、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
3、强调圆周与圆心角之间的关系是通过弧联系起来的,做题时学会找弧及弧所对的圆心角和圆周角。
五、达标检测
1、如图,点A、B、C在⊙O上,点D在⊙O内,点A与点D在点B、C所在直线的同侧,比较∠BAC与∠BDC的大小,并说明理由.
2、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB,交⊙O于E。图中哪些与∠BOC相等?请分别把它们表示出来.
3、如图,在⊙O中,弦AB、CD相交于点E,∠BAC=40°,∠AED=75°,求∠ABD的度数.
4、如图,△ABC的3个顶点都在⊙O上,∠ACB=40°,则∠AOB=_______,∠OAB=_____。
2.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,在这8个角中,有几对相等的角?请把它们分别表示出来:___________________________________________________.
5、如图,AB是⊙O的直径,∠BOC=120°,CD⊥AB,则∠ABD=___________。
6、如图,△ABC的3个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有______________________。
7、如图,点A、B、C、D在⊙O上,∠ADC=∠BDC=60°.判断△ABC的形状,并说明理由.
初中数学苏科版九年级上册2.2 圆的对称性教案及反思: 这是一份初中数学苏科版九年级上册2.2 圆的对称性教案及反思,共2页。教案主要包含了知识回顾,操作与探索,探究与思考,尝试与交流,例题解析,课堂练习,课堂小结,课堂作业等内容,欢迎下载使用。
数学九年级上册2.4 圆周角教案设计: 这是一份数学九年级上册2.4 圆周角教案设计,共4页。教案主要包含了知识准备,学习内容,知识梳理,达标检测等内容,欢迎下载使用。
初中数学2.4 圆周角教案设计: 这是一份初中数学2.4 圆周角教案设计,共3页。