2020-2021学年2.2 圆的对称性教学设计
展开1、经历探索圆的轴对称性及有关性质的过程
2、掌握垂径定理
3、会运用垂径定理解决有关问题
学习重、难点
重点:垂径定理及应用
难点:垂径定理的应用
学习过程:
一、知识回顾
二、操作与探索
提出问题:“圆”是不是轴对称图形?它的对称轴是什么?
操作:①在圆形纸片上任画一条直径;
②沿直径将圆形纸片折叠,你发现了什么?
结论:圆是轴对称图形,经过圆心的任意一条直线都是它的对称轴。
三、探究与思考
1、判断下列图形是否具有对称性?如果是中心对称图形,指出它的对称中心;如果是轴对称图形,指出它的对称轴。
2、将第二个图中的直径AB改为怎样的一条弦,它将变成轴对称图形?
四、尝试与交流
1、如图,CD是⊙O的弦,画直径AB⊥CD,垂足为P,将圆形纸片沿AB对折,你发现了什么?
2、你能给出几何证明吗?(写出已知、求证并证明)
3、得出垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的弧。
4、注意:
①条件中的“弦”可以是直径;
②结论中的“平分弧”指平分弦所对的劣弧、优弧。
5、给出几何语言
五、例题解析
例 1 如图,以O为圆心的两个同心圆中,大圆的弦AB
交小圆于点C、D,AC与BD相等吗?为什么?
例 2 如图,已知:在⊙O中,弦AB的长为8,圆心O到AB的距离为3。
⑴求的半径;
⑵若点P是AB上的一动点,试求OP的范围。
五、课堂练习
练习1、2、3
六、课堂小结
1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
2、垂径定理的推论,如:平分弦的直径垂直于这条弦,且平分弦所对的弧等。
七、作业
习题2.2 6、8、9
苏科版九年级上册2.2 圆的对称性教学设计: 这是一份苏科版九年级上册2.2 圆的对称性教学设计,共5页。教案主要包含了情境引入,例题精讲,随堂练习,小结与反思,课后作业等内容,欢迎下载使用。
苏科版九年级上册2.2 圆的对称性教学设计及反思: 这是一份苏科版九年级上册2.2 圆的对称性教学设计及反思,共5页。
初中数学苏科版九年级上册2.2 圆的对称性教案: 这是一份初中数学苏科版九年级上册2.2 圆的对称性教案,共8页。教案主要包含了与弧有关的折叠,与弦有关的折叠,与图形有关的折叠,教学过程,教学策略选择与设计,教学评价设计,板书设计等内容,欢迎下载使用。