![人教版八年级上册15.1.2分式的基本性质 教学设计01](http://img-preview.51jiaoxi.com/2/3/12092181/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级上册15.1.2分式的基本性质 教学设计02](http://img-preview.51jiaoxi.com/2/3/12092181/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级上册15.1.2分式的基本性质 教学设计03](http://img-preview.51jiaoxi.com/2/3/12092181/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年15.1.2 分式的基本性质教案
展开表3 教学设计
课程基本信息 | ||
课题 | 分式的基本性质 | |
教科书 | 书名:义务教育教科书 数学 八年级 上册 出版社:人民教育出版社 出版日期:2013年 6月 | |
教学目标 | ||
教学目标:1.理解并掌握分式的基本性质. 2. 能运用分式的基本性质进行分式的恒等变形. 3. 经历探索分式基本性质的过程,体会类比和建模的思想. 教学重点:理解并掌握分式的基本性质. 教学难点:灵活运用分式的基本性质进行分式的恒等变形. | ||
教学过程 | ||
时间 | 教学环节 | 主要师生活动 |
2分钟
4分钟
5分钟
3分钟
3分钟
3分钟
3分钟
2分钟 |
复习引入
探究新知
例题讲解
巩固练习
归纳总结
作业 | 1.分式的概念 一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.在分式中,A叫做分子,B叫做分母. 2.分数的基本性质 一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变. , (c≠0), 其中a,b,c都是数.
类比分数的基本性质,你能猜想分式有什么性质吗?
如图,三个完全相同的小长方形如图摆成一个大长方形,如果一个小长方形的面积为S,长为a,你能求出长方形的宽吗? 从一个小长方形来看宽可以表示为 ,从大长方形来看宽可以表示为 ,从图上可以知道这这两个宽是相同的,所以 = 可以发现分式的分子、分母乘以同一个不是0的数,分式的值不变.
如果m个完全相同的小长方形如图摆放,我们同样可以得到:
=
如果(m+n)个完全相同的小长方形如图摆放,我们同样可以得到:
= = =
分式的分子、分母乘以同一个不是0的整式,分式的值也不变.
因为字母可以表示不同的数,所以分式也具有类似分数的基本性质. 分式的基本性质:分式的分子、分母乘(或除以)同一个不等于0的整式,分式的值不变. 即 , (C≠0) 其中A,B,C是整式.
例1.填空: (1) = (2) = (3) = (4) = (b≠0) (5) = 分析:(1)因为 的分母xy除以x才能化为y,为了保证分式的值不变,根据分式的基本性质,分子也要除以x.即 = = (2) 的分子3x2+3xy=3x(x+y),除以3x化为x+y,所以分母也要除以3x,即 = = (3) 的分母ab乘a才能化为a2b,根据分式的基本性质,分子也要乘a.即 = = (4) 的分母a2乘b化为a2b,根据分式的基本性质,分子也要乘b.即 = = (5) 的分子m乘m-1化为m2-m,根据分式的基本性质,分母也要乘m-1,即 = =
练习: 1.填空 (1) = ; (2) . 答案:(1) 5y (2) x-y
2.下列各式中,正确的是( ) A. B. C. D.
例2.不改变分式的值,使下列分式的分子、分母中的字母系数都不含“—”号. (1) (2) (3) - 分析:类比学习分数时符号的变化,利用分式的基本性质进行变形可得
(1) = (2) =- (3) - = - = 练习: 不改变分式的值,使下列分式的分子、分母都不含负号. (1) (2) (3) (4)
例3.把下列分式中的字母a,b同时扩大到原来的2倍,分式的值会怎么变化? (1) (2) 分析:式子中的字母同时扩大,所以需要把字母换为原来的2倍,再利用分式的基本性质变形对比. (1) = 分子分母都除以2得 ,所以分式的值 不变. (2) = 分子分母都除以2得 ,所以分式的值扩大到原来的2倍.
练习: 如果把分式中的x和y都扩大10倍,那么分式的值( ) A.扩大10倍 B.缩小10倍 C.是原来的 D.不变
例4. 不改变分式的值把下列各式的分子与分母中各项系数都化为整数. (1) (2) 分析:(1)通过观察,可以发现字母的系数分别为0.1,0.3,-0.4,都乘10,就可以化为整数,所以分式的分子分母都乘10.即 = = (2)分式中字母的系数分别为,,,,都乘2,4,3的最小公倍数12即可化为整数,所以分子分母都乘12.即 = =
练习:不改变分式的值把下列各式的分子与分母中各项系数都化为整数. (1) (2)
答案:(1) (2)
分式的基本性质: 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变 应用分式的基本性质需要注意: 1)分子、分母应同时做乘、除法中的同一种变换; 2)所乘(或除以)的必须是同一个整式; 3)所乘(或除以)的整式应该不等于0. 分式的变号法则: 分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变.
1. 写出等式中未知的分子或分母: ① = ② = ③ 2. 不改变分式的值,使分式的分子与分母都不含负号: ①- ; ②= . 3. 把分式中的x和y都扩大为原来的5倍,那么这个分式的值 ( ) A.扩大为原来的5倍 B.不变 C.缩小到原来的 D.扩大为原来的倍 4. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号: ① ②
5. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数: ① ② |
数学人教版15.1.2 分式的基本性质教案: 这是一份数学人教版15.1.2 分式的基本性质教案,共5页。
初中数学人教版八年级上册15.1.2 分式的基本性质教案设计: 这是一份初中数学人教版八年级上册15.1.2 分式的基本性质教案设计,共6页。教案主要包含了内容分析,教材分析,学情分析,教学法分析,教学过程设计等内容,欢迎下载使用。
初中人教版15.1.2 分式的基本性质教学设计: 这是一份初中人教版15.1.2 分式的基本性质教学设计,共3页。教案主要包含了引入,新知,例题,练习,小结,作业等内容,欢迎下载使用。