所属成套资源:人教版数学九年级上册单元检测卷(含答案)
初中数学人教版九年级上册第二十三章 旋转综合与测试一课一练
展开
这是一份初中数学人教版九年级上册第二十三章 旋转综合与测试一课一练,共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
一、选择题
下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
下列图形中,属于中心对称图形的是( )
A. B. C. D.
下列所述图形中,既是轴对称图形又是中心对称图形的是( )
A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形
如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )
A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( )
如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )
A.55° B.60° C.65° D.70°
如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)
如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )
A.90°﹣α B.α C.180°﹣α D.2α
如图,在正方形网格中,将△ABC顺时针旋转后得到△A'B′C′,则下列4个点中能作为旋转中心的是( )
A.点P B.点Q C.点R D.点S
如果一个图形绕着某点O旋转角α后所得到的图形与原图形重合,那么称此图形是关于点O的旋转对称图形,显然正多边形都是旋转对称图形,下列多边形中,是旋转对称图形且旋转角为45º的是( )
A.正三角形 B.正方形 C.正八边形 D.正十边形
如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )
A.(5,2) B.(2,5) C.(2,1) D.(1,2)
如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )
A.(60,0) B.(72,0) C.(67.2,1.8) D.(79.2,1.8)
二、填空题
点(a,2)与点(b,-2)关于原点中心对称,则a+b的值是 .
如图是4×4的正方形网格,再把其中一个白色小正方形涂上阴影,使整个阴影部分成为轴对称图形,这样的白色小正方形有________个.
如图,已知抛物线C1,抛物线C2关于原点对称.若抛物线C1的解析式为y=eq \f(3,4)(x+2)2-1,那么抛物线C2的解析式为 .
如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为 .
如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为 .
如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为 .
三、作图题
如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
四、解答题
直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.
如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
(1)写出点Q的坐标是 ;
(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m的取值范围.
如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若四边形AECF的面积为16,DE=3,求EF的长.
如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点 ,旋转了 度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′B′C′D′,在这个旋转过程中:
①旋转中心是什么?
②若旋转角为45°,边CD与A′D′交于F,求DF的长度.
如图所示,正方形ABCD的边BC上有一点E,∠DAE的平分线交CD于点F.
求证:AE=DF+BE.
\s 0 参考答案
答案为:B.
答案为:C.
答案为:C.
答案为:B;
答案为:C;
答案为:C.
答案为:B.
答案为:C.
答案为:A;
答案为:C;
答案为:A;
答案为:A
答案为:0.
答案为:4
答案为:y=-eq \f(3,4)(x-2)2+1
答案为:3
答案为:15°.
答案为:.
解:(1)线段A1B1如图所示;
(2)线段A1B2如图所示;
(3)S=4×4﹣×2×2﹣×2×4﹣×2×4=6.
解:根据题意,得(x2+2x)+(x+2)=0,y=-3.
∴x1=-1,x2=-2.
∵点P在第二象限,
∴x2+2x<0,
∴x=-1,
∴x+2y=-7
解:(1)点Q的坐标为(﹣3,4);故答案为(﹣3,4);
(2)把点Q(﹣3,4)向右平移m个单位长度,向下平移2m个单位长度后,
得到的点Q′的坐标为(﹣3+m,4﹣2m),
而Q′在第三象限,所以,解得2<m<3,
即m的范围为2<m<3.
解:(1)∵把△ADE顺时针旋转到△ABF的位置是绕点A顺时针旋转,
∴旋转中心是点A,
∵四边形ABCD是正方形,[来源:学.科.网]
∴∠DAB=90°
∴旋转角度是90度.
故答案为:A;90;
(2)由旋转变换的性质可知:△ADE≌△ABF,
∴S四边形AECF=S正方形ABCD=16,BF=DE=3,
∴AD=DC=BC=4,FC=FB+BC=7,
∴EC=DC﹣DE=1,
∴EF==5.
解:(1)∵将△ACD旋转后能与△EBD重合,
∴旋转中心是点D,旋转了180度;
故答案为:D,180;
(2)∵将△ACD旋转后能与△EBD重合,
∴BE=AC=4,DE=AD,
在△ABE中,由三角形的三边关系得,AB﹣BE<AE<AB+BE,
∵AB=7,
∴3<AE<11,即3<2AD<11,
∴1.5<AD<5.5,
即中线AD长的取值范围是1.5<AD<5.5.
解:①旋转中心为B点.②如图所示:
∵旋转角为45°,
∴∠ABA′=45°.
∵四边形ABCD为正方形,
∴∠ABD=45°,∠A′DF=45°.
∴∠ABA′=∠ABD.
∴点B、A′、D三点在一条直线上.
在Rt△ABD中,BD===2.
∵A′D=BD﹣BA′,
∴A′D=2﹣2.
在Rt△A′DF中,DF==4﹣2.
解:如图,将△ADF绕点A顺时针旋转90°得△ABF′,
则∠3=∠1,∠AFD=∠F′,∠ABF′=∠D,BF′=DF.
∵四边形ABCD为正方形,
∴AB∥CD,∠ABC=∠D=90°,
∴∠AFD=∠FAB,∠ABF′=∠D=90°,
∴∠ABF′+∠ABC=180°,
∴F′,B,C三点共线.
∵∠FAB=∠2+∠BAE,
∴∠AFD=∠2+∠BAE.
又∵∠DAE的平分线交CD于点F,
∴∠1=∠2,
∴∠3=∠2,
∴∠AFD=∠3+∠BAE,
∴F′=∠3+∠BAE.
∵∠F′AE=∠3+∠BAE,
∴∠F′AE=∠F′,
∴AE=EF′=BF′+BE=DF+BE.
相关试卷
这是一份人教版九年级上册数学单元练习卷:旋转(有答案),共55页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份初中人教版23.1 图形的旋转精品课时训练,共11页。试卷主要包含了1 图形的旋转》基础巩固卷,下列运动属于旋转的是等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册23.1 图形的旋转复习练习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。