2002-2019年深圳市数学中考真题分类汇编:专题11 圆(解析版)
展开1.(深圳2003年5分)如图,已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是【 度002】
A.△AED∽△BEC B.∠AEB=90º C.∠BDA=45º D.图中全等的三角形共有2对
2.(深圳2004年3分)已知⊙O1的半径是3,⊙O2的半径是4,O1O2=8,则这两圆的位置关系是【 度002】
A.相交 B.相切 C.内含 D.外离[来源:学.科.网Z.X.X.K]
3.(深圳2004年3分)如图,⊙O的两弦AB、CD相交于点M,AB=8cm,M是AB的中点,CM:MD=1:
4,则CD=【 度002】
.
4.(深圳2004年3分)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120º,则∠BCE=
【 度002】
[来源:学科网ZXXK]
5.(深圳2005年3分)如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点
C,若CE=2,则图中阴影部分的面积是【 度002】
6.(深圳2009年3分)如图,已知点A、B、C、D均在已知圆上,AD//BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为【 】度002】】
A. cm2 B. cm2 C. cm2 D. cm2
7.(2012广东深圳3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BM0=120o,则⊙C的半径长为【 】
8.(2015广东深圳3分)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A、50° B、20° C、60° D、70°
【答案】D
【解析】
试题分析:根据AB为⊙O直径可得:∠ACB=90o,则∠ACD=∠ACB-∠DCB=90°-20°=70°,根据同弧所对的圆周角相等可得:∠DBA=∠ACD=70°.
考点:圆的基本性质.学科&网
1.(深圳2010年招生3分)下图中正比例函数与反比例函数的图象相交于A、B 两点,分别以A、B 两点为圆心,画与x 轴相切的两个圆,若点A(2 , 1) ,则图中两个阴影部分面积的和是
2.(深圳2011年3分)如图,在⊙O中,圆心角∠AOB=120º,弦AB=cm,则OA= cm.
3.(2018年深圳中考)如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )
A. 3 B. C. D.
【答案】D
【详解】如图,设光盘圆心为O,连接OC,OA,OB,
∵AC、AB都与圆O相切,
∴AO平分∠BAC,OC⊥AC,OB⊥AB,
∴∠CAO=∠BAO=60°,
∴∠AOB=30°,
在Rt△AOB中,AB=3cm,∠AOB=30°,
∴OA=6cm,
根据勾股定理得:OB=3,
则光盘的直径为6,
故选D.
【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.
1. (深圳2002年10分)阅读材料,解答问题
命题:如图,在锐角△ABC中,BC=a、CA= b、AB=c,△ABC的外接圆半径为R,则。
证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A
∵CD为⊙O的直径,∴∠DBC=90º。
在Rt△DBC中, ∵,
∴sinA=,即。
同理、。
∴
请你阅读前面所给的命题及证明后,完成下面(1)、(2)两小题
(1)前面的阅读材料中略去了“和”的证明过程,请你把“”的证明过程补写出来。
(2)直接用前面阅读材料中命题的结论解题
已知,如图,在锐角△ABC中,BC=,CA=,∠A=60º,求△ABC的外接圆的半径R及∠C。
2.(深圳2003年18分)如图,已知A(5,-4),⊙A与x 轴分别相交于点B、C,⊙A与y轴相且于点D,
(1)求过D、B、C三点的抛物线的解析式;
(2)连结BD,求tan∠BDC的值;
(3)点P是抛物线顶点,线段DE是直径,直线PC与直线DE相交于点F,∠PFD的平分线FG交
DC于G,求sin∠CGF的值。
3.(深圳2008年8分)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积
为8,cos∠BFA=,求△ACF的面积.
4.(深圳2009年10分)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B
- 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?[来源:学.科.网Z.X.X.K]
5.(深圳2010年招生8分)如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC,
( 1 ) ( 2 分)求证:MN 是半圆的切线,
( 2 ) ( 3 分)设D 是弧AC 的中点,连接BD交AC 于G , 过D 作DE⊥AB于E,交AC于F.
求证:FD=FG..
( 3 ) ( 3 分)若△DFG的面积为4.5 ,且DG=3,GC=4, 试求△BCG的面积.
6.(深圳2011年8分)如图1,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.[来源:Z。xx。k.Com]
(1)求证:AE是⊙O的直径;
(2)如图2,连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和.(保留与根号)
[来源:学,科,网]
7.(2017年深圳中考)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.
(1)求⊙O的半径r的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.
【考点】MR:圆的综合题.
【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;
(2)只要证明∠CMD=△COA,求出sin∠COA即可;
(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.
【解答】解:(1)如图1中,连接OC.
∵AB⊥CD,
∴∠CHO=90°,
在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,
∴r2=42+(r﹣2)2,
∴r=5.
(3)如图2中,连接AM.
∵AB是直径,
∴∠AMB=90°,
∴∠MAB+∠ABM=90°,
∵∠E+∠ABM=90°,
∴∠E=∠MAB,
∴∠MAB=∠MNB=∠E,
∵∠EHM=∠NHFM
∴△EHM∽△NHF,
∴=,
∴HE•HF=HM•HN,
∵HM•HN=AH•HB,
∴HE•HF=AH•HB=2•(10﹣2)=16.
8.(2018年深圳中考)如图,△ABC内接于⊙O,,点为上的动点,且.
(1)求的长度;
(2)在点D运动的过程中,弦AD的延长线交BC的延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由.
(3)在点D的运动过程中,过A点作AH⊥BD,求证:.
【答案】(1) ;(2) ;(3)证明见解析.
(3)连接CD,延长BD至点N,使DN=CD,连接AN,通过证明△ADC≌△ADN,可得AC=AN,继而可得AB=AN,再根据AH⊥BN,即可证得BH=HD+CD.
【详解】(1)过A作AF⊥BC,垂足为F,交⊙O于G,
∵AB=AC,AF⊥BC,∴BF=CF=BC=1,
在RtΔAFB中,BF=1,∴AB=;
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.