所属成套资源:中考数学三轮冲刺《圆》解答题冲刺练习(含答案)
中考数学三轮冲刺《圆》解答题冲刺练习12(含答案)
展开
这是一份中考数学三轮冲刺《圆》解答题冲刺练习12(含答案),共9页。试卷主要包含了求BF的长等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习121.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB. 2.如图,AB是半圆O的直径,C,D是半圆O上的两点,弧AC=弧BD,AE与弦CD的延长线垂直,垂足为E.(1)求证:AE与半圆O相切;(2)若DE=2,AE=,求图中阴影部分的面积 3.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形. 4.如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.(1)求证:DE是⊙O的切线;(2)若DE=4,⊙O的半径为5.求BF的长. 5.如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=8,tan∠BDF=,求EF的长. 6.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线. 7.如图,△ABC内接于⊙O,且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE,CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为 时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为 . 8.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.⊙O是△ABC的内切圆,与三边分别相切于点E,F,G.(1)求证:内切圆的半径r=1;(2)求tan∠OAG的值.
0.中考数学三轮冲刺《圆》解答题冲刺练习12(含答案)参考答案 一 、解答题1.证明:(1)连接OD,如图所示:∵DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,∴EB=ED,∴△DBE是等腰三角形;(2)∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB,∵OA=OC,∴OE∥AB,∴△COE∽△CAB. 2. (1)证明:连接AC,∵,∴,即,∴∠CAB=∠ACD,∴AB∥CE,∵AE⊥CD,∴∠AEC=90°,∴∠EAB=90°,∴AE⊥AB,∵OA为半径,∴AE与半圆O相切;(2)解:连接AD,取AD的中点F,连接EF、OD,∵Rt△ADE中,∠AED=90°,AE=2,DE=2,∴AD==4,∵F是AD的中点,∴EF=AC=2,∴ED=EF=DF=2,∴△DEF是等边三角形,∴∠EDA=60°,由(1)知:AB∥CF∴∠DAO=∠EDA=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,OA=AD=4,…∴S阴影=S四边形AODE﹣S扇形OAD=×(2+4)×2﹣=6﹣. 3.解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形. 4.证明:(1)连接OD,BC,OD与BC相交于点G,∵D是弧BC的中点,∴OD垂直平分BC,∵AB为⊙O的直径,∴AC⊥BC,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,∴四边形DECG为矩形,∴CG=DE=4,∴BC=8,∵⊙O的半径为5,∴AB=10,∴AC==6,OG=AC=3,GD=2,在矩形GDEC中 CE=GD=2,∴AE=8.∵D为弧BC的中点,∴∠EAD=∠FAB,∵BF切⊙O于B,∴∠FBA=90°.又∵DE⊥AC于E,∴∠E=90°,∴∠FBA=∠E,∴△AED∽△ABF,∴,∴∴BF=5. 5.证明:(1)连接OD,∵CO⊥AB,∴∠E+∠C=90°,∵∠DFO为△EFD的外角,且FD=FE,∠ODC为△EOD的外角,且OD=OC,∴∠DFO=∠E+∠EDF=2∠E,∠DOF+∠E=∠ODC=∠C,得∠DOF+∠E+∠DFO=∠C+2∠E,即∠DOF+∠DFO=∠C+∠E=90°,∴FD是⊙O的切线.(2)连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD∽△FDA,∴DF:AF=BD:AD,在Rt△ABD中,tan∠A=tan∠BDF=,∴DF:8=,∴DF=2,∴EF=2. 6.解:(1)BD=DC.理由如下:连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=75°,∴∠DEC=75°,∴∠EDC=180°﹣75°﹣75°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,∵OB=OP,∴∠OBP=∠OPB=45°,∴∠BOP=90°;(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=,又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线; 7.解:(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.∵四边形ABCE是⊙O的内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB.在△ABE和△CDE中,∴△ABE≌△CDE(AAS).(2)解:①60°;②9. 8.解:(1)证明:如图,连结OE,OF,OG.∵⊙O是△ABC的内切圆,∠C=90°,∴四边形CEOF是正方形,∴CE=CF=r.又∵AG=AE=3-r,BG=BF=4-r,AG+BG=5,∴(3-r)+(4-r)=5.解得r=1;(2)如图,连结OA,在Rt△AOG中,∵r=1,AG=3-r=2,∴tan∠OAG==.
相关试卷
这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。