所属成套资源:中考数学三轮冲刺《圆》解答题冲刺练习(含答案)
中考数学三轮冲刺《圆》解答题冲刺练习07(含答案)
展开这是一份中考数学三轮冲刺《圆》解答题冲刺练习07(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习07
1.(1)引入:
如图1,直线AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC,直线BC是否与⊙O相切,为什么?
(2)引申:
如图2,记(1)中⊙O的切线为直线l,在(1)的条件下,将切线l向下平移,设平移后的直线l与OB的延长线相交于点B′,与AB的延长线相交于点E,与OP的延长线相交于点C′,找出图2中与C′P相等的线段,并说明理由.
2.如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?
3.如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,
过点D作直线DF∥BC.
(1)判断直线DF与⊙O的位置关系,并说明理由;
(2)若AB=6,AE=,CE=,求BD的长.
4.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.
(1)求证:AE=AB.
(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.
5.如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在弧BD上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.
(1)求证:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的长.
6.如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长.
7.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.
8.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,
已知∠PBA=∠C.
⑴求证:PB是⊙O的切线;
⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
0.中考数学三轮冲刺《圆》解答题冲刺练习07(含答案)参考答案
一 、解答题
1.解:
(1)相切,
∵OC⊥OA,∴∠AOC=90°,
∴∠APO+∠OAB=90°,
∵OA=OB,∴∠OAB=∠ABO,
∵PC=PB,∴∠CBP=∠CPB,
∵∠APO=∠CPB,
∴∠CBP+∠OBA=90°,即∠OBC=90°,
∴OB⊥BC∵OB为半径,
∴BC与⊙O相切;
(2)C′P=C′E,
∵∠OB′C′=90°,∠APO+∠OAB=90°,
且∠APO=∠C′PE,
∴∠OAB+∠C′PE=90°,
∵OA=OB,∴∠OAB=∠ABO,
∴∠ABO+∠C′PE=90°,
∵∠EBB′+∠BEB′=90°,且∠EBB′=∠ABO,
∴∠C′PE=∠BEB′,
∴C′P=C′E.
2.解:(1)过点O作OM⊥AB,垂足是M.
∵⊙O与AC相切于点D.
∴OD⊥AC,
∴∠ADO=∠AMO=90°.
∵△ABC是等边三角形,
∴∠DAO=∠MAO,
∴OM=OD.
∴AB与⊙O相切;
(2)过点O作ON⊥BE,垂足是N,连接OF.
∵AB=AC,AO⊥BC,
∴O是BC的中点,
∴OB=2.
在直角△OBM中,∠MBO=60°,
∴OM=OB•sin60°=,BM=OB•cos60°=1.
∵BE⊥AB,
∴四边形OMBN是矩形.
∴ON=BM=1,BN=OM=.
∵OF=OM=,
由勾股定理得NF=.
∴BF=BN+NF=+.
3.解:(1)DF与⊙O相切,
理由:连接OD,
∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,
∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;
(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,
∴,∴=,∴BD=.
4.解:
5.解:(1)连接BD,∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠1=90°,
∵∠1=∠2,∠2=∠3,
∴∠1=∠3,
∴∠DAB+∠3=90°,
∴∠CFA=180°﹣(DAB+∠3)=90°,
∴CF⊥AB;
(2)连接OE,∵∠ADB=90°,
∴∠CDB=180°﹣∠ADB=90°,
∵在Rt△CDB中,CD=4,CB=4,
∴DB=8,
∵∠1=∠3,
∴cos∠1=cos∠3=,
∴AB=10,
∴OA=OE=5,AD=6,
∵CD=4,
∴AC=AD+CD=10,
∵CF=AC•cos∠3=8,
∴AF=6,
∴OF=AF﹣OA=1,
∴EF=2.
6.解:(1)连接OC,证∠DAC=∠CAO=∠ACO,
∴PA∥CO,
又∵CD⊥PA,
∴CO⊥CD,
∴CD为⊙O的切线
(2)过O作OF⊥AB,垂足为F,
∴四边形OCDF为矩形.
∵DC+DA=6,
设AD=x,则OF=CD=6-x,AF=5-x,
在Rt△AOF中,有AF2+OF2=OA2,
即(5-x)2+(6-x)2=25,解得x1=2,x2=9,
由AD<DF知0<x<5,故x=2,
从而AD=2,AF=5-2=3,
由垂径定理得AB=2AF=6.
7.解:连接OE,并反向延长交AD于点F,连接OA,
∵BC是切线,
∴OE⊥BC,
∴∠OEC=90°,
∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴四边形CDFE是矩形,
∴EF=CD=AB=8,OF⊥AD,
∴AF=AD=×12=6,
设⊙O的半径为x,则OE=EF﹣OE=8﹣x,
在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,
解得:x=6.25,
∴⊙O的半径为:6.25.
8.⑴证明:如图所示,连接OB.
∵AC是⊙O的直径,
∴∠ABC=90°,∠C+∠BAC=90°.
∵OA=OB,∴∠BAC=∠OBA.
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB.
∴PB是⊙O的切线.
⑵解:⊙O的半径为3,
∴OB=3,AC=6.
∵OP∥BC,
∴∠BOP=∠OBC=∠C.
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴即BC=2.25.
相关试卷
这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习12(含答案),共9页。试卷主要包含了求BF的长等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习09(含答案),共9页。