所属成套资源:中考数学三轮冲刺《圆》解答题冲刺练习(含答案)
中考数学三轮冲刺《圆》解答题冲刺练习11(含答案)
展开
这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习111.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切. 2.已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.(1)求m的取值范围.(2)当m为正整数时,求方程的根. 3.如图,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长. 4.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,求线段BP的长. 5.如图,在等腰△ABC中,AB=BC,以AB为直径的半圆分别交AC、BC于点D、E两点,BF与⊙O相切于点B,交AC的延长线于点F.(1)求证:D是AC的中点;(2)若AB=12,sin∠CAE=,求CF的值. 6.如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长. 7.如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.(1)判断BE是否平分∠ABC,并说明理由;(2)若AE=6,BE=8,求EF的长. 8.已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.
0.中考数学三轮冲刺《圆》解答题冲刺练习11(含答案)参考答案 一 、解答题1.解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切2.解:(1)∵关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根,∴△=(﹣2m)2﹣4(m2+m﹣2)>0.解得m<2;(2)由(1)知,m<2.有m为正整数,∴m=1,将m=1代入原方程,得x2﹣2x=0x(x﹣2)=0,解得x1=0,x2=2. 3.解:(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°,∴OA⊥AP.∴ AP是⊙O的切线.(2)连接AD.∵CD是⊙O的直径,∴∠CAD=90°.∴AD=AC•tan30°=.∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°.∴∠P=∠PAD.∴PD=AD=. 4. (1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,解得:BP=. 5.(1)证明:连接DB,∴AB是⊙O直径,∴∠ADB=90°,∴DB⊥AC.又∵AB=BC.∴D是AC的中点.(2)解:∵BF与⊙O相切于点B,∴∠ABF=90°,∵∠CAE=∠CBD,∴∠CBD=∠ABD,∠ABD=∠F,∴sin∠CAE=sin∠F=sin∠ABD,∴在△ADB和△ABF中, =,∵AB=12,∴AF=,AD=,∴CF=AF﹣AC=. 6.解:(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=. 7.解:(1)BE平分∠ABC. 理由:∵CD=AC,∴∠D=∠CAD. ∵AB=AC,∴∠ABC=∠ACB ∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD. ∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,∴∠ABE=∠EBC,即BE平分∠ABC. (2)由(1)知∠CAD=∠EBC =∠ABE. ∵∠AEF=∠AEB,∴△AEF∽△BEA. ∴,∵AE=6, BE=8.∴EF=. 8.(1)证明:∵等边△ABC内接于⊙O,∴∠ABC=60°,O即是△ABC的外心,又是△ABC的内心,∴∠BAM=∠CAM=30°,∴∠AMB=90°,∵DE∥BC,∴∠EDA=∠AMB=90°,∵AD为⊙O的直径,∴DE是⊙O的切线;(2)解:∵△ABC是等边三角形,∴BM=AB=3,连接OB,如图所示:则∠OBM=30°,∴OM=OB,由勾股定理得:OB2﹣OM2=BM2,即OB2﹣(OB)2=32,解得:OB=2,∴OM=,AM=3,AD=4,∵DE∥BC,∴=,即=,解得:AE=8,∴BE=AE﹣AB=8﹣6=2.
相关试卷
这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习13(含答案),共8页。试卷主要包含了5AC=8,等内容,欢迎下载使用。