所属成套资源:中考数学三轮冲刺《圆》解答题冲刺练习(含答案)
中考数学三轮冲刺《圆》解答题冲刺练习14(含答案)
展开
这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
中考数学三轮冲刺《圆》解答题冲刺练习141.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A. 2.如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长. 3.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长. 4.如图,AB、BF分别是⊙O的直径和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG.(1)求证:AB⊥CD;(2)若sin∠HGF=,BF=3,求⊙O的半径长. 5.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF是⊙O的切线,还需要添加的一个条件是(要求写出两种情况):________或者________;(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断. 6.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值. 7.如图,在等腰△ABC中,AB=BC,以AB为直径的半圆分别交AC、BC于点D、E两点,BF与⊙O相切于点B,交AC的延长线于点F.(1)求证:D是AC的中点;(2)若AB=12,sin∠CAE=,求CF的值. 8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D. (1)判断直线BC与⊙O的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O的半径; ②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)
0.中考数学三轮冲刺《圆》解答题冲刺练习14(含答案)参考答案 一 、解答题1.解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A 2.证明:(1)∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B=,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5. 3. (1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=. 4. (1)证明:如图,连接OF,∵HF是⊙O的切线,∴∠OFH=90°.即∠1+∠2=90°.∵HF=HG,∴∠1=∠HGF.∵∠HGF=∠3,∴∠3=∠1.∵OF=OB,∴∠B=∠2.∴∠B+∠3=90°.∴∠BEG=90°.∴AB⊥CD.(2)解:如图,连接AF,∵AB、BF分别是⊙O的直径和弦,∴∠AFB=90°.即∠2+∠4=90°.∴∠HGF=∠1=∠4=∠A.在Rt△AFB中,AB=4.∴⊙O的半径长为2. 5.解:(1)答案不唯一,如①∠BAE=90°,②∠EAC=∠ABC.理由:①∵∠BAE=90°,∴AE⊥AB.又∵AB是⊙O的直径,∴EF是⊙O的切线.②∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°.∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB.又∵AB是⊙O的直径,∴EF是⊙O的切线.(2)EF是⊙O的切线.证明:如图,作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°.∵∠CAE=∠B,∴∠CAE+∠CAM=90°,即AE⊥AM.∵AM是⊙O的直径,∴EF是⊙O的切线. 6.解:(1)证明:∵BE平分∠ABC,∴∠1=∠2,∵∠1=∠3,∠3=∠4,∴∠4=∠2,∵AB为直径,∴∠AEB=90°,∵∠2+∠BAE=90°∴∠4+∠BAE=90°,即∠BAD=90°,∴AD⊥AB,∴AD为⊙O切线;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵sin∠BAC==,∴设BC=3k,AC=4k,则AB=5k.连接OE交OE于点G,如图,∵∠1=∠2,∴=,∴OE⊥AC,∴OE∥BC,AG=CG=2k,∴OG=BC=k,∴EG=OE﹣OG=k,∵EG∥CB,∴△EFG∽△BFC,∴===,∴FG=CG=k,在Rt△OGF中,tan∠GFO===3,即tan∠AFO=3. 7. (1)证明:连接DB,∴AB是⊙O直径,∴∠ADB=90°,∴DB⊥AC.又∵AB=BC. ∴D是AC的中点.(2)解:∵BF与⊙O相切于点B,∴∠ABF=90°,∵∠CAE=∠CBD,∴∠CBD=∠ABD,∠ABD=∠F,∴sin∠CAE=sin∠F=sin∠ABD,∴在△ADB和△ABF中,∵AB=12,∴AF=8,AD=3,∴CF=AF﹣AC=2. 8.解:(1)相切,理由如下:连接OD.∵AD平分∠BAC,∴∠CAD=∠OAD.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA.∴OD∥AC,又∠C=90°,∴OD⊥BC,∴BC与⊙O相切.(2)①∵AC=3,∠B=30°,AB=6.又OA=OD=r,∴O=2r.∴AB=3r.∴3r=6,r=2,即⊙O的半径是2;②由(1)得OD=2,在Rt△ODB中,∠B=30°,则OB=4,BD=2.∴S阴影=S△BOD-S扇形EOD=×2×2-=2-.
相关试卷
这是一份中考数学三轮冲刺《圆》解答题冲刺练习15(含答案),共10页。试卷主要包含了8,AC=12,求⊙O的直径.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习13(含答案),共8页。试卷主要包含了5AC=8,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。