所属成套资源:中考数学三轮冲刺《圆》解答题冲刺练习(含答案)
中考数学三轮冲刺《圆》解答题冲刺练习02(含答案)
展开
这是一份中考数学三轮冲刺《圆》解答题冲刺练习02(含答案),共7页。试卷主要包含了6,求BD的长及⊙O的半径.等内容,欢迎下载使用。
中考数学三轮冲刺《圆》解答题冲刺练习021.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B.(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长. 2.已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值. 3.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=4+,BC=2,求⊙O的半径. 4.如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度. 5.如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE. 求证:DE是⊙O的切线. 6.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P,求证:(1)△BEC∽△ADC;(2). 7.如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=0.6,求BD的长及⊙O的半径. 8.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2-5x+6=0的两个实数根.(1)求证:PA·BD=PB·AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
0.中考数学三轮冲刺《圆》解答题冲刺练习02(含答案)参考答案 一 、解答题1.证明:(1)连接OC,如图所示:∵AB是⊙的直径,∴∠ACB=90°,即∠1+∠2=90°,∵OB=OC,∴∠2=∠B,又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切线;(2)∵PC是⊙O的切线,∴PC2=PA•PB,∴62=4×PB,解得:PB=9,∴AB=PB﹣PA=9﹣4=5. 2.(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3. 3.解:(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.
又∵OA=OC,∴∠OAC=∠OCA=30°.
又∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=∠AOC-∠P=90°.∴OA⊥PA.
又∵点A在⊙O上,∴PA是⊙O的切线.
(2)解:过点C作CE⊥AB于点E.
在Rt△BCE中,∠B=60°,BC=2,∴BE=0.5BC=,CE=3.
∵AB=4+,∴AE=AB-BE=4.
∴在Rt△ACE中,AC=5.∴AP=AC=5.
∴在Rt△PAO中,OA=.∴⊙O的半径为.4. (1)证明:连接OC,∵点C在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO。∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C在⊙O上,OC为⊙0的半径,∴CD为⊙0的切线.(2)解:过0作0F⊥AB,垂足为F,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF为矩形,∴0C=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得.即,化简得:解得x=2或x=9。由AD<DF,知0<x<5,故x=2。从而AD=2, AF=5-2=3.∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6. 5.证明:连结DO,∵AD2=AB·AE,∠BAD=∠DAE,∴△BAD∽△DAE,∴∠ADB=∠E. 又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,又∵OD⊥BC,∴OD⊥DE,故DE是⊙O的切线 6.证明:(1)∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠CEB=∠CDA=90°,∵∠C=∠C,∴△BEC∽△ADC;(2)由(1)得:△BEC∽△ADC,∴,∵AB=AC,∴.7.解: 8.解:(1)证明:∵DP平分∠APB,∴∠APE=∠BPD.∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°.∵AB是⊙O的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴=,∴PA·BD=PB·AE.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF.∵∠EAP=∠B,∴∠APC=∠BAC,易证DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)的长是x2-5x+6=0,解得AE=2,BD=3,∴由(1)可知:=,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴=,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形.∵AD=DF,∴四边形ADFE是菱形,此时点F即为点M.∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴=,∴DG=,∴在线段BC上存在一点M,使得四边形ADME是菱形,其面积为DG·AE=2×=.
相关试卷
这是一份中考数学三轮冲刺《圆》解答题冲刺练习14(含答案),共9页。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习13(含答案),共8页。试卷主要包含了5AC=8,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《圆》解答题冲刺练习11(含答案),共8页。试卷主要包含了解得m<2;等内容,欢迎下载使用。