所属成套资源:2023年人教版数学八年级下册期末复习 单元复习+专题复习(含答案)
2023年人教版数学八年级下册期末复习《几何解答题》专项复习(含答案)
展开
这是一份2023年人教版数学八年级下册期末复习《几何解答题》专项复习(含答案),共18页。
2023年人教版数学八年级下册期末复习《几何解答题》专项复习1.如图,在△ABC中,D是BC上一点,且满足AC=AD,请你说明AB2=AC2+BC·BD. 2.如图,在△ABC中,∠ABC=45º,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、DC分别交于点G、H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2. 3.如图,已知∠C=90°,AM=CM,MP⊥AB于P.求证:BP2=AP2+BC2.
4.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长. 5.如图,已知四边形ABCD为矩形,AD=20cm、AB=10cm.M点从D到A,P点从B到C,两点的速度都为2cm/s;N点从A到B,Q点从C到D,两点的速度都为1cm/s.若四个点同时出发.(1)判断四边形MNPQ的形状.(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由. 6.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME. 7.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由. 8.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长. 9.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积. 10.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长. 11.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),求证:AM2+MF2=AF2. 12.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想. 13.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC.求证:四边形EFGH是菱形. 14.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由. 15.如图,已知把一个含45°的三角板的锐角顶点与正方形ABCD的顶点A重合,然后将三角板绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当三角板绕点A旋转到BM=DN时,有BM+DN=MN.当三角板绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当三角板绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.
参考答案1.证明:作AE⊥BC于E,如图所示: 则∠AEB=∠AEC=90°,由勾股定理得:AB2=AE2+BE2,AE2=AD2﹣DE2,∵AC=AD,AE⊥DC,∴DE=CE,∴AB2=AC2+BE2﹣DE2=AC2+(BE+DE)(BE﹣DE)=AC2+BC•BD.2.解:(1)BH=AC 证明:∵∠BDC=∠BEC=∠CDA=90º, ∠ABC=45º,∴∠BCD=45º=∠ABC, ∴DB=DC. 又∵∠BHD=∠CHE,∴∠DBH=∠DCA,∴△DBH≌△DCA, ∴BH=AC. (2)证明:连接GC,∴GC2﹣GE2=EC2. ∵F为BC的中点,DB=DC,∴DF垂直平分BC,∴BG=GC,∴BG2﹣GE2=EC2. ∵∠ABE=∠CBE,∴EC=EA,∴BG2﹣GE2=EA23.证明:连接BM,如图,∵△ABC是直角三角形,∠C=90°,∴AB2=BC2+AC2,则AB2﹣AC2=BC2.又∵在直角△AMP中,AP2=AM2﹣MP2,∴AB2﹣AC2+(AM2﹣MP2)=BC2+(AM2﹣MP2).又∵AM=CM,∴AB2﹣AC2+(AM2﹣MP2)=BC2+(MC2﹣MP2),①∵△APM是直角三角形,∴AM2=AP2+MP2,则AM2﹣MP2=AP2,②∵△BPM与△BCM都是直角三角形,∴BM2=BP2+MP2=MC2+BC2,MC2+BC2﹣MP2=BM2﹣MP2=BP2,③把②③代入①,得AB2﹣AC2+AP2=BP2,即BP2=AP2+BC2.4.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,AD=BC,∠A=∠C,AE=CF.∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)∵AB∥CD,∴∠DFA=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF=4.5.解:(1)四边形MNPQ是平行四边形. 理由如下:在矩形ABCD中,AD=BC=20cm,AB=CD=10cm,且∠A=∠B=∠C=∠D=90°.设运动时间为t秒,则AN=CQ=t cm,BP=DM=2t cm.∴BN=DQ=(10﹣t)cm,CP=AM=(20﹣2t)cm.由勾股定理可得,NP=,MQ=∴NP=MQ. 同理,可得MN=PQ.∴四边形MNPQ是平行四边形.(2)能.理由如下:∵当四边形MNPQ能为菱形时,NP=QP,∴=,∴=,解得 t=5.即四边形MNPQ能为菱形时,运动时间是5 s.6.解:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.7.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.8.解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=.9.证明:(1)∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC==5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30.10.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形,解:(2)∵四边形AFHG是正方形,∴∠BHC=90°,又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2,∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去),∴AD=12,∴AB=6.11.解:(1)∵四边形ABFG、BCED是正方形,∴AB=FB,CB=DB,∠ABF=∠CBD=90°,∴∠ABF+∠ABC=∠CBD+∠ABC,即∠ABD=∠CBF,在△ABD和△FBC中,,∴△ABD≌△FBC(SAS);(2)∵△ABD≌△FBC,∴∠BAD=∠BFC,∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,∴AM2+MF2=AF2.12.解:(1)PB=PQ.证明:连接PD,∵四边形ABCD是正方形,∴∠ACB=∠ACD,∠BCD=90°,BC=CD,又∵PC=PC,∴△DCP≌△BCP(SAS),∴PD=PB,∠PBC=∠PDC,∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°,∴∠PBC=∠PQD,∴∠PDC=∠PQD,∴PQ=PD,∴PB=PQ(2)PB=PQ.证明:连接PD,同(1)可证△DCP≌△BCP,∴PD=PB,∠PBC=∠PDC,∵∠PBC=∠Q,∴∠PDC=∠Q,∴PD=PQ,∴PB=PQ.13.证明:∵E,F分别是AB,BD的中点,∴EF=0.5AD.同理可得:GH=0.5AD,GF=0.5BC,HE=0.5BC,又AD=BC,∴EF=GF=GH=HE.∴四边形EFGH是菱形.14.(1)证明:∵D、E分别为AC、AB的中点,∴ED∥BC,ED=BC.同理FG∥BC,FG=BC,∴ED∥FG,ED=FG,∴四边形DEFG是平行四边形,∵AE=BE,FH=BF,∴EF=HA,∵BC=HA,∴EF=BC=DE,∴▱DEFG是菱形;(2)解:猜想:AC=AB时,四边形DEFG为正方形,理由是:∵AB=AC,∴∠ACB=∠ABC,∵BD、CE分别为AC、AB边上的中线,∴CD=AC,BE=AB,∴CD=BE,在△DCB和△EBC中,∵,∴△DCB≌△EBC(SAS),∴∠DBC=∠ECB,∴HC=HB,∵点G、F分别为HC、HB的中点,∴HG=HC,HF=HB,∴GH=HF,由(1)知:四边形DEFG是菱形,∴DF=2FH,EG=2GH,∴DF=EG,∴四边形DEFG为正方形.15.解:(1)中的结论仍然成立,即 BM+DN=MN.证明:如图1,在MB的延长线上截取BE=DN,连结AE.易证△ABE≌△ADN(SAS).∴ AE=AN,∠EAB=∠NAD.∵∠BAD=90°,∠NAM=45°,∴∠BAM+∠NAD=45°,∴∠EAB+∠BAM=45°.∴∠EAM=∠NAM.又AM为公共边,∴△AEM≌△ANM.∴ME=MN.∴MN=ME=BE+BM=DN+BM,即DN+BM=MN.(2)猜想:线段BM,DN和MN之间的等量关系为:DN-BM=MN.证明:如图2,在DN上截取DE=MB,连结AE.易证△ABM≌△ADE(SAS).∴AM=AE,∠MAB=∠EAD.易证△AMN≌△AEN(SAS).∴MN=EN.∵DN-DE=EN,∴DN-BM=MN.
相关试卷
这是一份2023年人教版数学八年级下册期末复习《最值问题》专项复习(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年人教版数学八年级下册期末复习《图形的折叠问题》专项复习(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年人教版数学七年级下册期末复习《平行线的性质与判定》解答题专项复习(含答案),共13页。