所属成套资源:初一数学人教版上册(秋季班)讲义
人教版七年级上册第二章 整式的加减2.2 整式的加减巩固练习
展开这是一份人教版七年级上册第二章 整式的加减2.2 整式的加减巩固练习,文件包含人教版初一数学上册秋季班讲义第6讲整式的加减--尖子班教师版docx、人教版初一数学上册秋季班讲义第6讲整式的加减--尖子班学生版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
第6讲 整式的加减
知识点1 合并同类项
根据乘法分配律把同类项合并成一项叫做合并同类项.
【典例】
1.下列计算正确的是( )
A. 3a﹣2a=1 B. x2y﹣2xy2=﹣xy2 C. 3ax﹣2xa=ax D. 3a2+5a2=8a4
【方法总结】
1.合并同类项首先找到同类项,即满足两个“相同”的项,跟字母的先后顺序无关.
2.合并同类项只需把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
【随堂练习】
1.(2018秋•南山区期末)若am﹣2bn+7与﹣3a4b4的和仍是一个单项式,则m﹣n= .
2.(2018秋•建邺区校级期末)计算与化简
(1)48÷[(﹣2)3﹣(﹣4)]
(2)x2﹣5xy+yx+2x2
知识点2 去括号与添括号
1.去括号法则:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里面各项的符号都不改变.
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里面各项的符号都要改变.
2.添括号法则:
添括号时,如果括号前面是加号,括到括号里的各项都不变符号;如果括号前面是减号,括到括号里的各项都改变符号.
【典例】
1.下列去括号错误的是( )
A. 3a2﹣(2a﹣b+5c)=3a2﹣2a+b﹣5c
B. 5x2+(﹣2x+y)﹣(3z﹣a)=5x2﹣2x+y﹣3z+a
C. 2m2﹣3(m﹣1)=2m2﹣3m﹣1
D. ﹣(2x﹣y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2
【方法总结】
1.括号前面有系数的在去括号时可以先把数字乘到括号里面,再根据去括号法则进行运算.
2.两个层次的括号同时存在时,可以按照从里到外先去小括号,再去中括号;也可以将小括号看成一个整体先去中括号再去小括号.
【随堂练习】
1.(2018秋•盐田区校级期中)将(a+1)﹣(﹣b+c)去括号,应该等于( )
A.a+1﹣b﹣c B.a+1﹣b+c C.a+1+b+c D.a+1+b﹣c
二.填空题(共3小题)
2.(2018秋•和平区期末)已知﹣a=5,则﹣[+(﹣a)]= .
3.(2017秋•利辛县期中)把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是 .
4.(2018秋•雁塔区校级月考)当1≤m<3时,化简|m﹣1|﹣|m﹣3|= .
知识点3:整式的加减
几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接。然后去括号,再合并同类项.
【典例】
1.已知一个多项式加上x2﹣3得到﹣x2+x,那么这个多项式为( )
A. x+3 B. x﹣3 C. ﹣2x2+x﹣3 D. ﹣2x2+x+3
【方法总结】
多项式与多项式、单项式相加减运算中,可以先把所求的未知整式作为整体,用某个大写字母表示,根据已知条件列出等式,最后通过对等式的变形、计算求出未知整式。
【典例】
1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为____
【方法总结】
解决整式加减的实际问题时,需要将整式运算与实际问题相结合,首先找出实际问题公式、等量关系,将给定的整式带入对应的位置,求出未知的量即可。
2.若有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|2b|=_____
【方法总结】
整式的加减与绝对值相结合时,首先根据数轴上点的位置确定各字母的大小关系,再判断绝对值号里面整式的正负,并去绝对值号化成一般整式.
【随堂练习】
1.(2018秋•临邑县校级期中)已知a、b、c在数轴上的位置如图所示,化简|a+c|﹣|1﹣b|+|﹣a﹣b|= .
2.(2018秋•高邮市校级月考)三个连续奇数中,最小的一个是2n﹣1,则这三个连续奇数的和是 .
二.解答题(共2小题)
3.(2018秋•北碚区期末)实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a+c|.
4.(2018秋•兰州期末)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差中,不含有x、y,求nm+mn的值.
知识点4:化简求值
【典例】
1.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)=_____
【方法总结】
对复杂多项式化简求值首先将多项式去括号、合并同类项进行化简、加减运算,找到化简结果与已知条件的关系,代入求值即可。
2.若|x+y+2|+(xy﹣1)2 =0,则(3x﹣xy+1)﹣(xy﹣3y﹣2)=_____
【方法总结】
绝对值与平方都具有非负性,几个非负数之和为0,则每个非负数都为0.
【随堂练习】
1.(2018秋•延庆区期末)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.
2.(2018秋•锦州期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.
3.(2018秋•安仁县期末)有这样一道题,计算(2x4﹣4x3y﹣x2y2)﹣2(x4﹣2x3y﹣y3)+x2y2的值,其中x=2,y=﹣1,甲同学把“x=2”错抄成“x=﹣2”,但他计算的结果也是正确的,请用计算说明理由.
4.(2019•路南区一模)已知代数式A=x2+xy+2y﹣,B=2x2﹣2xy+x﹣1
(1)求2A﹣B;
(2)当x=﹣1,y=﹣2时,求2A﹣B的值;
(3)若2A﹣B的值与x的取值无关,求y的值.
5.(2018秋•临安区期末)先化简,再求值:(2x2+x)﹣[4x2﹣(3x2﹣x)],其中x=﹣.
综合运用
1.若x+y=2017,xy=2016,则整式(x+2y﹣3xy)﹣(﹣2x﹣y+xy)+2xy﹣1=________.
2.合并同类项
(1)3x2﹣1﹣2x﹣5+3x﹣x2
(2)a2﹣ab+a2+ab﹣b2.
3.有人说代数式(a2﹣3﹣3a+a3)﹣(2a3+4a2+a﹣8)+(a3+3a2+4a﹣4)的值与a无关,你认为正确吗?请说明你得出的结论和理由.
4.已知:A=x2﹣2xy+y2,B=x2+2xy+y2
(1)求A+B;
(2)如果2A﹣3B+C=0,那么C的表达式是什么?
5.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:
(1)判断下列各式的符号(填“>”或“<”)
a﹣b_______0,b﹣c_______0,c﹣a_______0,b+c_______0
(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.
6.一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.
7.已知代数式mx2﹣mx﹣2与3x2+mx+m的和是单项式,求代数式m2﹣2m+1的值.
8.先化简下式,再求值:
2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.
9.先化简,再求值:3m2n﹣[mn2﹣(4mn2﹣6m2n)+m2n]+4mn2,其中m=﹣2,n=3.
10.一辆公交车上原来有(6a﹣6b)人,中途下去一半,又上来若干人,使车上共有乘客(10a﹣6b)人,问上车的乘客是多少人?当a=3,b=2时,上车的乘客是多少人?
相关试卷
这是一份初中人教版第四章 几何图形初步4.2 直线、射线、线段测试题,文件包含人教版初一数学上册秋季班讲义第12讲与线段有关的计算--尖子班教师版docx、人教版初一数学上册秋季班讲义第12讲与线段有关的计算--尖子班学生版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份人教版七年级上册4.1.1 立体图形与平面图形课后练习题,文件包含人教版初一数学上册秋季班讲义第11讲图形的展开与折叠--尖子班教师版docx、人教版初一数学上册秋季班讲义第11讲图形的展开与折叠--尖子班学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份初中数学人教版七年级上册4.3.1 角复习练习题,文件包含人教版初一数学上册秋季班讲义第13讲与角度有关的运算--尖子班学生版docx、人教版初一数学上册秋季班讲义第13讲与角度有关的运算--尖子班教师版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。