2023年中考数学一轮复习《与圆有关的计算》课后练习(含答案)
展开2023年中考数学一轮复习
《与圆有关的计算》课后练习
一 、选择题
1.若120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( )
A.3 B.4 C.9 D.18
2.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )
A.4 B.5 C.6 D.7
3.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过图形面积为( )
A.π B.π C.6π D.π
4.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )
A.3 B.6 C.3π D.6π
5.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
6.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )
A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm2
7.如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为( )
A. B.π C.π D.π
8.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是( )
A.R2﹣r2=a2 B.a=2Rsin36° C.a=2rtan36° D.r=Rcos36°
二 、填空题
9.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为 cm.
10.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,由线段EC、BC,弧EB围成的图形的面积为
11.如图,点M,N分别是正五边形ABCDE的两边AB,BC上的点,且AM=BN,点O是正五边形的中心,则∠MON的度数是 度.
12.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是 .
13.如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;···,按此规律,继续画半圆,则第6个半圆的面积为______________.(结果保留π)
14.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2= .
三 、解答题
15.如图,D是等边三角形ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC,BC于点E,F.
(1)求证:AD是⊙O的切线;
(2)连结OC,交⊙O于点G,若AB=8,求线段CE,CG与围成的阴影部分的面积S.
16.如图,Rt△ABC中,∠C=90°,AC=,tanB=.半径为2的⊙C,分别交AC,BC于点D,E,得到.
(1)求证:AB为⊙C的切线;
(2)求图中阴影部分的面积.
17.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE.
(1)求证:直线PD是⊙A的切线;
(2)若PC=2,sin∠P=,求图中阴影部份的面积.
18.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连结EF,CG.
(1)求证:EF∥CG;
(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.
参考答案
1.C
2.B
3.D
4.A
5.D
6.C.
7.D.
8.A
9.答案为:4π.
10.答案为:8﹣2﹣π.
11.答案为:72;
12.答案为:8+8.
13.答案为:128π
14.答案为:∶2;
15.解:(1)证明:∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°.
∵CA=CD,∴∠D=∠CAD.
∵∠ACB=∠D+∠CAD,
∴∠CAD=30°,
∴∠BAD=60°+30°=90°,
∴AD⊥AB,∴AD是⊙O的切线.
(2)如图,连结OE,
∵OA=OE,∠OAE=60°,
∴△OAE是等边三角形,
∴AE=AO=AB=AC,
∴AE=EC,
∴S△OEC=S△AOE=×42=4 .
∵CA=CB,OA=OB,∴CO⊥AB,
∴∠AOC=90°,∴∠EOG=30°,
∴S扇形OEG==,
∴S阴影=S△OEC-S扇形OEG=4 -.
16.解:(1)如图,过点C作CF⊥AB于点F,
在Rt△ABC中,tanB==,∴BC=2AC=2,
∴AB===5,
∴CF===2.∴AB为⊙C的切线;
(2)S阴影=S△ABC-S扇形ECD
=AC·BC-=××2-=5-π.
17.解:(1)证明:如图,过A作AH⊥PD,垂足为H.
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,
∴∠ADH=∠P,∠AHD=∠PCD=90°,
又∵PD=BC,
∴AD=PD,
∴△ADH≌△DPC,
∴AH=CD.
∵CD=AB,且AB是⊙A的半径,
∴AH=AB,即AH是⊙A的半径,
∴PD是⊙A的切线.
(2)如图,在Rt△PDC中,sin∠P==,PC=2,
令CD=2x,PD=3x,由勾股定理得:
(3x)2﹣(2x)2=(2)2.解得:x=2,
∴CD=4,PD=6,
∴AB=AE=CD=4,AD=BC=PD=6,DE=2,
∵矩形ABCD的面积为6×4=24,Rt△CED的面积为×4×2=4,
扇形ABE的面积为π×42=4π.
∴图中阴影部份的面积为24﹣4﹣4π=20﹣4π.
18.解:(1)证明:∵四边形ABCD是正方形,
∴AB=BC=AD=2,∠ABC=90°.
∵△BEC绕点B逆时针旋转90°得△ABF,
∴△ABF≌△CBE,
∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC,
∴∠AFB+∠FAB=90°.
∵线段AF绕点F顺时针旋转90°得线段FG,
∴∠AFB+∠CFG=∠AFG=90°,AF=FG,
∴∠CFG=∠FAB=∠ECB.
∴EC∥FG.
∵AF=EC,AF=FG,∴EC=FG,
∴四边形EFGC是平行四边形,
∴EF∥CG;
(2)∵△ABF≌△CBE,
∴FB=BE=AB=1,
∴AF==.
在△FEC和△CGF中
∵EC=FG,∠ECF=∠GFC,FC=CF,
∴△FEC≌△CGF,
∴S△FEC=S△CGF.
∴S阴影=S扇形ABC+S△ABF+S△FGC-S扇形AFG
=+×2×1+×(1+2)×1-=-.
中考数学一轮复习考点过关练习《与圆有关的计算》(含答案): 这是一份中考数学一轮复习考点过关练习《与圆有关的计算》(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《与圆有关的性质》课后练习(含答案): 这是一份2023年中考数学一轮复习《与圆有关的性质》课后练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案): 这是一份中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。