所属成套资源:中考数学一轮复习 导向练习(含答案)
中考数学一轮复习《与圆有关的计算》导向练习(含答案)
展开这是一份中考数学一轮复习《与圆有关的计算》导向练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习
《与圆有关的计算》导向练习
一 、选择题
1.如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )
A.4 B.5 C.6 D.7
2.如图,PA、PB是⊙O切线,切点分别为A、B,若OA=2,∠P=60°,则长为( )
A.π B.π C. D.
3.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
4.如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为( )cm2.
A. B.2π C.π D.π
5.在矩形ABCD中,AB=16,如图所示,裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥底面圆的半径为( )
A.4 B.16 C.4 D.8
6.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是( )
A.2﹣π B.4﹣π C.2﹣π D.π
7.如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且:=1:3(表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为( )
A.1:3 B.1:π C.1:4 D.2:9
8.如图,正方形ABCD的边长为4,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是( )
A.8 B.4 C.16π D.4π
二 、填空题
9.在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为 .
10.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为 .
11.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,由线段EC、BC,弧EB围成的图形的面积为
12.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为______cm.
13.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于 .
14.已知一个圆心角为270°扇形工件,未搬动前如图所示,A、B两点触地放置,搬动时,先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,若半圆的半径为3m,则圆心O所经过的路线长是 m. (结果保留π)
三 、解答题
15.如图,在△ABC中,∠ACB=90°,∠B=15°,以点C为圆心,CA长为半径的圆交AB于点D.若AC=6,求弧AD的长.
16.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=3.
(1)以BC边上一点O为圆心作⊙O,使⊙O分别与AC、AB都相切 (要求:尺规作图,保留作图痕迹,不写作法);
(2)求⊙O的面积.
17.如图,有一直径是 m的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形BAC.
(1)求AB的长;
(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为多少米.
18.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4时,求扇形COQ的面积及的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,请直接写出OC的取值范围.
参考答案
1.B
2.C
3.D
4.B
5.A.
6.A
7.A.
8.A
9.答案为:5.
10.答案为:9.
11.答案为:8﹣2﹣π.
12.答案是:10.
13.答案为:16﹣4π.
14.答案为:6π
15.解:连接CD.
∵AC=CD,∴∠CAD=∠CDA.
∵∠ACB=90°,∠B=15°,∴∠CAD=75°,
∴∠ACD=30°.
∵AC=6,∴的长度为=π.
16.解:(1)如图所示:⊙O为所求的图形;
(2)在Rt△ABC中,
∵∠ABC=30°,
∴∠CAB=60°,
∵AO平分∠CAB,
∴∠CAO=30°,
设CO=x,则AO=2x,
∵在Rt△ACO中,AO2-CO2=AC2,
∴(2x)2-x2=32,
17.解:(1)如图,连结BC.
∵∠BAC=90°,
∴BC为⊙O的直径,即BC= m,
∴AB=BC=1(m);
(2)设所得圆锥的底面圆的半径为r(m),
由题意,得2πr=,解得r=.
答:圆锥的底面圆的半径为 m.
18.(1)证明:连接OQ,如图所示.
∵AP、BQ是⊙O的切线,
∴OP⊥AP,OQ⊥BQ,
∴∠APO=∠BQO=90°.
在Rt△APO和Rt△BQO中,
,
∴Rt△APO≌Rt△BQO(HL),
∴AP=BQ.
(2)解:∵Rt△APO≌Rt△BQO,
∴∠AOP=∠BOQ,
∴P、O、Q三点共线.
∵在Rt△BOQ中,cosB===,
∴∠B=30°,∠BOQ=60°,
∴OQ=OB=4,
∴S扇形COQ==π.
∵∠COD=90°,
∴∠QOD=90°+60°=150°,
∴优弧的长==π.
(3)解:设点M为Rt△APO的外心,则M为OA的中点,
∵OA=8,
∴OM=4,
∴当△APO的外心在扇形COD的内部时,OM<OC,
∴OC的取值范围为4<OC<8.
相关试卷
这是一份中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习知识梳理《与圆有关的计算》练习 (含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《与圆有关的性质》导向练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。