所属成套资源:2023年中考数学一轮复习 课后练习(含答案)
2023年中考数学一轮复习《与圆有关的位置关系》课后练习(含答案)
展开
这是一份2023年中考数学一轮复习《与圆有关的位置关系》课后练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习《与圆有关的位置关系》课后练习一 、选择题1.已知⊙P的半径为5,点P坐标为(2,1),点Q坐标为(0,6),则点Q与⊙P位置关系是( )A.点Q在⊙P外 B.点Q在⊙P上C.点Q在⊙P内 D.不能确定2.若△ABC的外接圆的圆心在△ABC的内部,则△ABC是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定3.已知⊙O的半径为7 cm,圆心O到直线l的距离为6.5 cm,则直线l与⊙O的交点个数为( )A.0 B.1 C.2 D.无法确定4.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8 cm,若l沿OC所在直线平移后与⊙O相切,则平移的距离是( )A.1 cm B.2 cm C.8 cm D.2 cm或8 cm5.如图,AB,AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )A.25° B.30° C.35° D.40°6.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )A.8 B.18 C.16 D.147.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=( )A.3 B.3 C.4 D.28.如图,已知点A(﹣8,0)、B(2,0),点C在直线y=﹣0.75x+4上,则使△ABC是直角三角形的点C的个数为( )A.1 B.2 C.3 D.4二 、填空题9.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是________.10.如图,在△ABC中,BC=3 cm,∠BAC=60°,△ABC能被半径至少为 cm的圆形纸片所覆盖.11.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径为________. 12.如图,PA、PB切⊙O于点A,B,点C是⊙O上的一点,且∠ACB=65°,则∠P= .13.如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 .14.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是______ cm;(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是______ cm.三 、解答题15.已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.(1)如图1,若点E在⊙O外,求∠AEB的度数.(2)如图2,若点E在⊙O内,求∠AEB的度数. 16.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;(2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小. 17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点F,过点D作⊙O的切线交AC于E.(1)求证:AD2=AB•AE;(2)若AD=2,AF=3,求⊙O的半径. 18.如图,在⊙O中,AB为直径,OC⊥AB,弦CF与OB交于点E,过点F,A分别作⊙O的切线交于点H,且HF与AB的延长线交于点D.(1)求证:DF=DE;(2)若tan∠OCE=,⊙O的半径为4,求AH的长.
参考答案1.A.2.A.3.C.4.D5.D.6.C.7.D.8.C.9.答案为:105°10.答案为:.11.答案为:5.12.答案为:50°.13.答案为:5.14.答案为:,.15.解:(1)如图1,连接OC、OD,∵CD=1,OC=OD=1,∴△OCD为等边三角形,∴∠COD=60°,∴∠CBD=∠COD=30°,∵AB为直径,∴∠ADB=90°,∴∠AEB=90°﹣∠DBE=90°﹣30°=60°;(2)如图2,连接OC、OD,同理可得∠CBD=30°,∠ADB=90°,∴∠AEB=90°+∠DBE=90°+30°=120°.16.解:(1)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.17.解:(1)如图,连接OD,DF.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC,∵AO=OB,∴OD∥AC,DO=AC,∵DE是切线,∴OD⊥DE,∵OD∥AC,∴DE⊥AC,∴∠AED=90°,∵∠DAE=∠DAC,∠AED=∠ADC=90°,∴△ADE∽△ACD,∴=,∴AD2=AE•AC=AB•AE.(2)∵AB=AC,∴∠B=∠C,∵∠DFC=∠B,∴∠C=∠DFC,∴DF=DC,∵DE⊥CF,∴EF=EC,设FE=EC=x,∵DE是切线∴DE2=EF•EA=AD2﹣AE2,∴x(x+3)=(2)2﹣(x+3)2,∴x=,∴AC=AF+FC=3+=,由(1)可知OD=AC=,∴⊙O的半径为.18.证明:(1)连结OF,如图,∵DH为切线,∴OF⊥DH,∴∠1+∠2=90°,∵OC⊥AB,∴∠C+∠4=90°,∵OF=OC,∴∠2=∠C,而∠3=∠4,∴∠1=∠3,∴DE=DF;(2)在Rt△OEC中,∵tan∠OCE=,∴OE=OC=2,设DF=x,则DE=x,在Rt△OFD中,x2+42=(x+2)2,解得x=3,∴DF=3,DO=5,∵HF和HA为切线,∴HF=HA,DA⊥AH,设AH=t,则HF=t,在Rt△DAH中,t2+92=(t+3)2,解得t=12,即AH的长为12.
相关试卷
这是一份中考数学一轮复习考点过关练习《与圆有关的位置关系》(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习《与圆有关的位置关系》课时练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《与圆有关的位置关系》课时跟踪练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。