数学八年级下册16.2 二次根式的运算第2课时随堂练习题
展开
这是一份数学八年级下册16.2 二次根式的运算第2课时随堂练习题,共5页。试卷主要包含了计算,6÷0,化简,下列式子中,为最简二次根式的是,分母有理化,把下列各式的分母有理化等内容,欢迎下载使用。
16.2.1 第2课时 二次根式的除法知识点 1 二次根式的除法运算1.计算:÷=== . 2.(教材例2变式)计算:(1)÷; (2); (3)÷; (4)2÷. 知识点 2 商的算术平方根3.化简:== . 4.化简:(1);(2);(3). 知识点 3 最简二次根式 5.(2021合肥蜀山区期末)下列式子中,为最简二次根式的是 ( )A. B. C. D. 6.(2021益阳)将化为最简二次根式,其结果是 ( )A. B. C. D. 知识点 4 分母有理化7.分母有理化:(1)== ;(2)== . 8.(教材练习T3变式)把下列各式的分母有理化:(1); (2). 9.若(a+)2与|b-1|互为相反数,则的值为 ( )A. B.+1 C.-1 D.1-10.若和都是最简二次根式,则m= ,n= . 11.化简:(1); (2)x2; (3); (4). 12.计算:(1)÷×; (2)×4÷. 13.(2020安庆期中)观察下列各式,并回答问题:①=2;②=3;③=4;….(1)根据上面三个等式提供的信息,写出第四个等式 ; (2)请按照上面等式的规律,试写出用n(n为正整数)表示的等式,并证明你的结论. “串”题训练 二次根式化简“隐含符号问题”方法指引:利用二次根式的性质化简时注意判断字母的符号,有的题目隐含字母小于0,如=-a(a<0),同样当a<0时,a=-. 例:将a根号外的因式移到根号内,得 ( )A. B.- C.- D. 变式1:化简的结果是 ( )A.2a B.-2aC.-2a D.2a变式2:已知xy<0,化简二次根式y的正确结果为 ( )A.- B.C.- D.
答案16.2.1 第2课时 二次根式的除法1.2 ==2.2.解:(1)原式===4.(2)原式===2.(3)原式===.(4)2÷=2=2.3.4.解:(1)===.(2)====.(3)== =.5.B A项中被开方数是分数,不是最简二次根式,故本项不符合题意;C项中被开方数是小数,不是最简二次根式,故本项不符合题意;D.=2,故不是最简二次根式.故选B.6.D ==.7.(1) (2)+18.解:(1)===2.(2)=-=-.9.C ∵(a+)2与|b-1|互为相反数,∴(a+)2+|b-1|=0,∴a+=0,b-1=0,∴a=-,b=1,∴===-1.故选C.10. 由于题干中二次根式均为最简二次根式,因此被开方数的幂指数均为1,由此可得关于m,n的方程组解得11.解:(1)===.(2)由题意知x>0,所以x2=x=x.(3)由题意知x>0,所以=x=.(4)===-1.12.(1)20 (2)1813.解:(1)=5(2)=(n+1).证明:左边===(n+1)=右边,∴等式成立. “串”题训练例:B 根据二次根式有意义的条件可知->0,∴a<0.方法一:a是一个负数,∴a=-=-;方法二:a=a=a·=a·=-.变式1:B 根据二次根式有意义的条件可知-8a3≥0,∴a≤0,∴==·=-2a.变式2:A 由二次根式有意义的条件可知x≥0.又∵xy<0,∴y<0.∴y=y·=y·=-.
相关试卷
这是一份沪科版八年级下册16.2 二次根式的运算第2课时课堂检测,共4页。试卷主要包含了[2019·安徽改编] 计算,[教材例2变式] 计算,6÷0,化简,分母有理化等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册16.1 二次根式第2课时同步测试题,共2页。试卷主要包含了最简二次根式等内容,欢迎下载使用。
这是一份初中人教版16.1 二次根式第2课时一课一练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。