2020-2021学年19.1.2 函数的图象教案
展开
这是一份2020-2021学年19.1.2 函数的图象教案,共4页。教案主要包含了回忆复习,实践应用,交流反思,检测反馈等内容,欢迎下载使用。
1.掌握用描点法画出一些简单函数的图象;
2.理解解析法和图象法表示函数关系的相互转换.
过程性目标
1.结合实际问题,经历探索用图象表示函数的过程;
2.通过学生自己动手,体会用描点法画函数的图象的步骤.
教学过程
一、回忆复习
函数的表示方法有哪些?
导入新课
写出正方形的边长x与面积s的函数关系式,指出自变量x的取值范围,并思考:如何在直角坐标系中画这个函数的图像?
三、实践应用
例1 画出函数y=x+1的图象.
分析 要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值.
解 取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:
由这一系列的对应值,可以得到一系列的有序实数对:
…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如图所示.
通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如图所示.
归纳:画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.
例2 画出函数的图象.
分析 用描点法画函数图象的步骤:分为列表、描点、连线三步.
解 列表:
描点:
用光滑曲线连线:
四、交流反思
由函数解析式画函数图象,一般按下列步骤进行:
1.列表:列表给出自变量与函数的一些对应值;
2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;
3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.
描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.
五、检测反馈
1.在所给的直角坐标系中画出函数的图象(先填写下表,再描点、连线).
2.画出函数的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点).
3.(1)画出函数y=2x-1的图象(在-2与2之间,每隔0.5取一个x值,列表;并在直角坐标系中描点画图).
(2)判断下列各有序实数对是不是函数y=2x-1的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:
(-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).
4.(1)画出函数的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图).
(2)判断下列各有序实数对是不是函数的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:
,,(-1,3),.
5.画出下列函数的图象:
(1)y=4x-1; (2)y=4x+1.
相关教案
这是一份初中数学19.1.2 函数的图象表格教案设计,共4页。教案主要包含了复习提问 1,讲授新课,实际应用巩固新知等内容,欢迎下载使用。
这是一份人教版八年级下册19.1.2 函数的图象教案,共4页。教案主要包含了创设情境,巩固新知,学以致用,小结,板书设计等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册第十九章 一次函数19.1 变量与函数19.1.2 函数的图象教案及反思,共4页。