所属成套资源:2022年中考数学二轮专题《圆》解答题专练(含答案)
2022年中考数学二轮专题《圆》解答题专练10(含答案)
展开
这是一份2022年中考数学二轮专题《圆》解答题专练10(含答案)
2022年中考数学二轮专题《圆》解答题专练10 LISTNUM OutlineDefault \l 3 如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形. LISTNUM OutlineDefault \l 3 如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长. LISTNUM OutlineDefault \l 3 如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求,AM,AF围成的阴影部分面积. LISTNUM OutlineDefault \l 3 如图,已知△ABC,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=6,,求BE的长. LISTNUM OutlineDefault \l 3 如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求tanA的值和DB的长. LISTNUM OutlineDefault \l 3 如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长. LISTNUM OutlineDefault \l 3 如图,Rt△ABC中,∠BAC=60°,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求∠CAD的度数;(2)若OA=2,求阴影部分的面积(结果保留π). LISTNUM OutlineDefault \l 3 如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cosC=时,求⊙O的半径. LISTNUM OutlineDefault \l 3 \s 0 2022年中考数学二轮专题《圆》解答题专练10(含答案)答案解析、解答题 LISTNUM OutlineDefault \l 3 (1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l,∴OC∥BD,∴∠ABD=∠AOC=60°,∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°,∴∠EAB=∠AEC,∴CE∥OB,又∵CO∥EB,∴四边形OBEC为平行四边形,又∵OB=OC=4,∴四边形OBEC是菱形. LISTNUM OutlineDefault \l 3 解:(1)证明:如图,连接AO并延长交⊙O于点E,连接BE,则∠ABE=90°,∴∠EAB+∠E=90°.∵∠E=∠C,∠C=∠BAD,∴∠EAB+∠BAD=90°.∴AD是⊙O的切线.(2)解:由(1)可知∠ABE=90°,直径AE=2AO=6,AB=4,∴.∵∠E=∠C=∠BAD,BD⊥AB,∴cos∠BAD=cos∠E.∴.∴. LISTNUM OutlineDefault \l 3 解:(1)连结OM,∵AB=AC,E是BC中点,∴BC⊥AE,∵OB=OM,∴∠OMB=∠MBO,∵∠FBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC,∴OM⊥AE,∴AM是⊙O的切线;(2)∵E是BC中点,∴BE=BC=3,∵OB:OA=1:2,OB=OM,∴OM:OA=1:2,∵OM⊥AE,∴∠MAB=30°,∠MOA=60°,OA:BA=1:3,∵OM∥BC,∴△AOM∽△ABE,∴==,∴OM=2,∴AM==2,∴S阴影=×2×2﹣=2﹣π. LISTNUM OutlineDefault \l 3 (1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠A+∠ABD=90°.又∵∠A=∠CBD,∴∠CBD+∠ABD=90°.∴∠ABC=90°.∴AB⊥BC.又∵AB是⊙O的直径,∴BC为⊙O的切线.(2)解:连接AE.如图所示:∵AB是⊙O的直径,∴∠AEB=∠ADB=90°.∵∠BAD=∠BED,∴. ∴在Rt△ABD中,.∵BD=6,∴AB=10.∵E为中点,∴AE=BE.∴△AEB是等腰直角三角形.∴∠BAE=45°.∴. LISTNUM OutlineDefault \l 3 解:(1)证明:连结OB,如图所示:∵OB=OD,∴∠ODB=∠OBD,∵DC是⊙O的直径,∴∠DBC=90°,∴∠CDB+∠C=90°,∵∠ABD=∠C,∴∠OBD+∠ABD=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:设半径为r,则OA=x+2,在Rt△AOB中,根据勾股定理得:x2+42=(x+2)2,解得:r=3,∴tanA==,∵∠A=∠A,∠ABD=∠C,∴△ADB∽△ACB,∴==,设DB=x,则BC=2x,∵CD=6,∴由勾股定理得:x2+(2x)2=62,解得:x=,即DB的长为. LISTNUM OutlineDefault \l 3 解:(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=0.5(180°﹣∠BAC=)=90°﹣0.5∠BAC,∵∠BAC=2∠CBE,∴∠CBE=0.5∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣0.5∠BAC)+0.5∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6. LISTNUM OutlineDefault \l 3 解:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD=30°.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形.∴∠AOE=60°,∴∠ADE=30°.又∵∠CAB=60°,∠CAD=30°,∴∠DAO=30°.∴∠ADE=∠OAD.∴ED∥AO.∴S△AED=S△EDO.∴阴影部分的面积=S扇形EOD==π. LISTNUM OutlineDefault \l 3 解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2 又OM=OB∴∠2=∠3∴OM∥BC ∵AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线(2)∵AB=AC∴∠ABC=∠C,AE⊥BC,∴E是BC中点∴EC=BE=3∵cosC==∴AC=EC=∵OM∥BC,∠AOM=∠ABE∴△AOM∽△ABE∴又∵∠ABC=∠C∴∠AOM=∠C在Rt△AOM中cos∠AOM=cosC=,∴∴AO=AB=+OB=而AB=AC=∴=∴OM=∴⊙O的半径是
相关试卷
这是一份2022年中考数学二轮专题《圆》解答题专练09(含答案),共9页。
这是一份2022年中考数学二轮专题《圆》解答题专练08(含答案),共8页。
这是一份2022年中考数学二轮专题《圆》解答题专练07(含答案),共10页。