所属成套资源:2022年中考数学二轮专题《圆》解答题专练(含答案)
2022年中考数学二轮专题《圆》解答题专练07(含答案)
展开
这是一份2022年中考数学二轮专题《圆》解答题专练07(含答案),共10页。
2022年中考数学二轮专题《圆》解答题专练07 1.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长. 2.如图,已知圆⊙O内接ABC,AD为⊙O直径,AE⊥BC于E点,连接BD. (1)求证:∠BAD=∠CAE; (2)若AB=8,AC=6,⊙O的半径为5,求AE的长. 3.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为 ;②连接OD,当∠PBA的度数为 时,四边形BPDO是菱形. 4.如图,已知等腰△ABC底角为30°,以BC为直径⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积. 5.如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长. 6.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF∶OB=1∶3,⊙O的半径为3,求BD:AD的值. 7.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径. 8.如图,AC是⊙O的直径,BF是⊙O的弦,BF⊥AC于点H,在BF上截取KB=AB,AK的延长线交⊙O于点E,过点E作PD∥AB,PD与AC、BF的延长线分别交于点D、P.(1)求证:PD是⊙O的切线;(2)若AK=,tan∠BAH=,求⊙O半径的长.
0.2022年中考数学二轮专题《圆》解答题专练07(含答案)答案解析 一 、解答题1.解:(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=. 2.解:(1)证明略;(2)AE=4.8. 3.(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,∴DP=AB,∠CPD=∠PBO,∵BO=AB,∴DP=BO,在△CDP与△POB中,∴△CDP≌△POB(SAS);(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP=BO,∴四边形BPDO是平行四边形,∵四边形BPDO是菱形,∴PB=BO,∵PO=BO,∴PB=BO=PO,∴△PBO是等边三角形,∴∠PBA的度数为60°.故答案为:4;60°. 4.解:(1)证明:连接OD∵等腰三角形ABC的底角为30°∴∠ABC=∠A=30°∵OB=OD∴∠ABC=∠ODB=30°∴∠A=∠ODB=30°∴OD∥AC∴∠ODE=∠DEA=90°∴DE是⊙O的切线(2)解:连接CD∵∠B=30°∴∠OCD=60°∴△ODC是等边三角形∴∠ODC=60°∴∠CDE=30°∵BC=4∴DC=2∵DE⊥AC∴CE=1;DE=∴S△OEC=== 5.解:(1)证明:连接OC,∵AB是⊙O的直径,=,∴∠BOC=90°,∵E是OB的中点,∴OE=BE,在△OCE和△BFE中,∵,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)解:∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF===2,∴S△ABF=,4×2=2•BD,∴BD=. 6.解:(1)连接OD,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,而OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线 (2)∵OF∶OB=1∶3,∴OF=1,BF=2,设BE=x,则DE=EF=x+2,∵AB为直径,∴∠ADB=90°,∴∠ADO=∠BDE,而∠ADO=∠A,∴∠BDE=∠A,又∠BED=∠DEA,∴△EBD∽△EDA,∴==,即==,∴x=2,∴= 7.解:(1)直线CE与⊙O相切.理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=… 8.解:(1)连接OE,∵OE=OA,∴∠OEA=∠OAE,∵PD∥AB,∴∠PEA=∠BAE,∵KB=AB,∴∠AKB=∠BAE,∴∠PEA=∠AKB,∵BF⊥AC,H为垂足,∴∠OAE+∠AKB=90°∴∠OEA+∠PEA=90°,即OE⊥PD,∴PD是⊙O的切线;(2)解:∵tan∠BAH=,BF⊥AC,H为垂足,且KB=AB,在Rt△ABH和Rt△AKH中,设AH=3n,则BH=4n,AB=5n,KH=n,∴由AH2+KH2=AK2,即(3n)2+n2=()2,解得n=1,∴AH=3,BH=4,设⊙O半径为R,则在Rt△OBH中,OH=R﹣3,由OH2+BH2=OB2,即(R﹣3)2+42=R2,解得:R=,∴⊙O半径的长为.
相关试卷
这是一份2022年中考数学二轮专题《圆》解答题专练09(含答案),共9页。
这是一份2022年中考数学二轮专题《圆》解答题专练08(含答案),共8页。
这是一份2022年中考数学二轮专题《圆》解答题专练06(含答案),共11页。试卷主要包含了6,求⊙O半径的长.等内容,欢迎下载使用。