人教版新课标A选修2-12.3双曲线导学案
展开学习目标
1.理解并掌握双曲线的几何性质.
学习过程
课前准备:
(预习教材理P56~ P58,文P49~ P51找出疑惑之处)
复习1:写出满足下列条件的双曲线的标准方程:
①,焦点在轴上;
②焦点在轴上,焦距为8,.
复习2:前面我们学习了椭圆的哪些几何性质?
二、新课导学:
※ 学习探究
问题1:由椭圆的哪些几何性质出发,类比探究双曲线的几何性质?
范围:: :
对称性:双曲线关于 轴、 轴及 都对称.
顶点:( ),( ).
实轴,其长为 ;虚轴,其长为 .
离心率:.
渐近线:
双曲线的渐近线方程为:.
问题2:双曲线的几何性质?
图形:
范围:: :
对称性:双曲线关于 轴、 轴及 都对称.
顶点:( ),( )
实轴,其长为 ;虚轴,其长为 .
离心率:.
渐近线:
双曲线的渐近线方程为: .
新知:实轴与虚轴等长的双曲线叫 双曲线.
※ 典型例题
例1求双曲线的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.
变式:求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
例2求双曲线的标准方程:
⑴实轴的长是10,虚轴长是8,焦点在x轴上;
⑵离心率,经过点;
⑶渐近线方程为,经过点.
※ 动手试试
练1.求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.
练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是,求它的标准方程和渐近线方程.
三、总结提升:
※ 学习小结
双曲线的图形、范围、顶点、对称性、离心率、渐近线.
※ 知识拓展
与双曲线有相同的渐近线的双曲线系方程式为
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 双曲线实轴和虚轴长分别是( ).
A.、 B.、
C.4、 D.4、
2.双曲线的顶点坐标是( ).
A. B. C. D.()
3. 双曲线的离心率为( ).
A.1 B. C. D.2
4.双曲线的渐近线方程是 .
5.经过点,并且对称轴都在坐标轴上的等轴双曲线的方程是 .
课后作业
1.求焦点在轴上,焦距是16,的双曲线的标准方程.
2.求与椭圆有公共焦点,且离心率的双曲线的方程.
高中数学人教版新课标A选修2-12.2椭圆学案设计: 这是一份高中数学人教版新课标A选修2-12.2椭圆学案设计,
人教版新课标A选修2-12.3双曲线导学案: 这是一份人教版新课标A选修2-12.3双曲线导学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。
人教版新课标A选修2-12.3双曲线导学案: 这是一份人教版新课标A选修2-12.3双曲线导学案,共4页。学案主要包含了课前准备,新课导学,总结提升等内容,欢迎下载使用。