|教案下载
搜索
    上传资料 赚现金
    2.1 合情推理与演绎推理(一) 教案
    立即下载
    加入资料篮
    2.1 合情推理与演绎推理(一) 教案01
    2.1 合情推理与演绎推理(一) 教案02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修1-22.1合情推理与演绎推理教案

    展开
    这是一份人教版新课标A选修1-22.1合情推理与演绎推理教案,共4页。教案主要包含了内容分析,教学目标,教学重点,教学难点,教学过程设计,练习与测试等内容,欢迎下载使用。

    归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。
    【教学目标】:
    1、知识与技能:
    (1)结合数学实例,了解归纳推理的含义
    (2)能利用归纳方法进行简单的推理,
    2、过程与方法:
    通过课例,加深对归纳这种思想方法的认识。
    3、情感态度与价值观:
    体验并认识归纳推理在数学发现中的作用。
    【教学重点】:
    (1)体会并实践归纳推理的探索过程
    (2)归纳推理的局限
    【教学难点】:
    引导和训练学生从已知的线索中归纳出正确的结论
    【教学过程设计】:
    【练习与测试】:
    (基础题)
    1)数列…中的等于( )
    A. B. C. D.
    2)从中得出的一般性结论是_____________。
    3)定义的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是( ).
    (1) (2) (3) (4) (A) (B)
    A. B. C. D.
    4)有10个顶点的凸多面体,它的各面多边形内角总和是________.
    5)在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图1所示的正六边形, 第三件首饰如图2, 第四件首饰如图3, 第五件首饰如图4, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六变形,依此推断第6件首饰上应有_______________颗珠宝,第件首饰所用珠宝总数为_________________颗.
    6)已知(n=1.2. …)试归纳这个数列的通项公式
    答案:
    1)B 推出
    2) 注意左边共有项
    3)B
    4)(n-2)3600
    5) 91,1+5+9+…4n+1=2n2+3n+1
    6) a1=1,a2= a3=… an=
    (中等题)
    1)观察下列的图形中小正方形的个数,则第n个图中有 个小正方形.
    2)-1 .3 .-7 .15 .( ) ,63 , , , 括号中的数字应为( )
    A.33 B.-31 C.-27 D.-57
    3)设平面内有n条直线(n ≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用表示 n条直线交点的个数,则 f(4 )=( )
    A.3 B.4 C.5 D.6
    4)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,的前4项,由此猜测的结果.
    答案:
    1)1+2+3+4+…+(n+1)=
    2)B 正负相间,3=1+2,7=3+22,15=7+23,15+24=31,31+25=63
    3)C
    4)依次为,1,22,32,42,所以an=n2
    (难题)
    1).迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数。小王发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数。小王欣喜万分,但小王按得出的通项公式,再往后写几个数发现它们不是质数。他写出不是质数的一个数是( ).
    A.1643B.1679C.1681D.1697
    2) 考察下列一组不等式:
    .
    将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式可以是 .
    答案:
    1)C 41,43,47,53,61,71,83,97的一个通项公式为an=n2+n+41,a40=1681,而1681=4141不是质数
    2)an+bn>an-mbm+ambn-m n,m, n>m
    教学环节
    教学活动
    设计意图
    一、问题情景
    学生阅读
    1、哥德巴赫猜想:
    观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.
    2、费马猜想:
    法国业余数学家之王—费马(1601-1665)在1640年通过对,,,,的观察,发现其结果都是素数,于是提出猜想:对所有的自然数,任何形如的数都是素数. 后来瑞士数学家欧拉,发现不是素数,推翻费马猜想.
    3、四色猜想:
    1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.
    引入课题
    通过阅读教材感受归纳推理的魅力
    从哥德巴赫猜想引出归纳推理概念
    二、概念教学
    ① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.
    ② 归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?
    (ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?
    (iii)观察等式:
    ,能得出怎样的结论?
    ③ 讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?
    (ii)归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)
    (iii)归纳推理的结果是否正确?(不一定)
    三、例题讲解
    例1:已知数列的第1项,且,试归纳出通项公式.
    (分析思路:试值n=1,2,3,4 → 猜想 →如何证明:将递推公式变形,再构造新数列)
    思考:证得某命题在n=n时成立;又假设在n=k时命题成立,再证明n=k+1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系)
    板书分析过程,提问a2,a3,a4等几项的计算结果
    设问:能直接解出an吗?
    四、课堂训练
    1、已知 ,推测的表达式.
    2、三角形的内角和是1800 ,凸四边形的内角和是3600,凸五边形的内角和是5400 , …… 由这些结论猜想凸n边形的内角和公式。
    解析:凸n边形的内角和公式是(n-2)×1800.
    3、由归纳猜想出一个一般结论。
    解析:猜想:(a,b,m均为正实数)。
    根据学生基础情况,决定是当堂引导学生证明结论或者是
    课外完成。
    五、小结
    1.归纳推理的几个特点
    1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.
    2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.
    3)归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.
    注:归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论
    2.归纳推理的一般步骤:
    1)对已有的资料进行观察、分析、归纳、整理;
    2)猜想
    3)检验
    1)规律性
    2)探索性
    3)观察、试验的不确定性
    指出对归纳推理的结果进行检验是必要的
    归纳推理
    相关教案

    高中数学人教版新课标A选修2-22.1合情推理与演绎推理教学设计: 这是一份高中数学人教版新课标A选修2-22.1合情推理与演绎推理教学设计,共5页。教案主要包含了学情分析,教学目标,教学重点,教学难点,教学过程设计,练习与测试等内容,欢迎下载使用。

    高中数学人教版新课标A选修2-22.1合情推理与演绎推理教案设计: 这是一份高中数学人教版新课标A选修2-22.1合情推理与演绎推理教案设计,共3页。教案主要包含了内容分析,教学目标,教学重点,教学难点,教学过程设计,练习与测试等内容,欢迎下载使用。

    高中数学人教版新课标A选修1-22.1合情推理与演绎推理教学设计: 这是一份高中数学人教版新课标A选修1-22.1合情推理与演绎推理教学设计,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2.1 合情推理与演绎推理(一) 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map