2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-11 word版含答案
展开(时间:40分钟)
1.设函数f(x)=xex,则( )
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点
D.x=-1为f(x)的极小值点
答案 D
解析 f′(x)=ex+xex=(1+x)ex.令f′(x)=0,则x=-1.当x<-1时,f′(x)<0,当x>-1时,f′(x)>0,所以x=-1为f(x)的极小值点.
2.函数f(x)=(a>0)的单调递增区间是( )
A.(-∞,-1) B.(-1,1)
C.(1,+∞) D.(-∞,-1)∪(1,+∞)
答案 B
解析 函数f(x)的定义域为R,f′(x)==.由于a>0,要使f′(x)>0,只需(1-x)·(1+x)>0,解得x∈(-1,1),故选B.
3.函数f(x)=ln x-x在区间(0,e]上的最大值为( )
A.1-e B.-1
C.-e D.0
答案 B
解析 因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时,f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1.
4.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
答案 D
解析 由题图,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.
5.若函数f(x)=x2+ax+在是增函数,则a的取值范围为( )
A. B. D.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.
答案 1
解析 f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3时,f′(x)<0;x<1或x>3时,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.
7.已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)的单调递减区间是(0,4).
(1)实数k的值为________;
(2)若在(0,4)上为减函数,则实数k的取值范围是__________.
答案 (1) (2)
解析 (1)f′(x)=3kx2+6(k-1)x,由题意知f′(4)=0,解得k=.
(2)由f′(x)=3kx2+6(k-1)x≤0并结合导函数的图象可知,必有-≥4,解得k≤.又k>0,故0<k≤.
8.若函数f(x)=-x3+x2+2ax在上存在单调递增区间,则a的取值范围是________.
答案
解析 对f(x)求导,得f′(x)=-x2+x+2a=-2++2a.当x∈时,f′(x)的最大值为f′=+2a.令+2a>0,解得a>-.所以a的取值范围是.
9.已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.所以f(x)在单调递增,在单调递减.
(2)由(1),当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=取得最大值,最大值为f=ln +a=-ln a+a-1.
因此f>2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,则g(a)在(0,+∞)单调递增,g(1)=0.
于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.
因此,a的取值范围是(0,1).
10.已知函数f(x)=(x-k)ex.
(1)求f(x)的单调区间;
(2)求f(x)在区间上的最小值.
解 (1)由题意知f′(x)=(x-k+1)ex.
令f′(x)=0,得x=k-1.
f(x)与f′(x)随x的变化情况如下:
x | (-∞,k-1) | k-1 | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | | -ek-1 | |
所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).
(2)当k-1≤0,即k≤1时,f(x)在上单调递增,所以f(x)在区间上的最小值为f(0)=-k;
当0<k-1<1,即1<k<2时,f(x)在上单调递减,在(k-1,1]上单调递增,所以f(x)在区间上的最小值为f(k-1)=-ek-1;
当k-1≥1,即k≥2时,f(x)在上单调递减,
所以f(x)在区间上的最小值为f(1)=(1-k)e.
综上,当k≤1时,f(x)在上的最小值为f(0)=-k;
当1<k<2时,f(x)在上的最小值为f(k-1)=-ek-1;
当k≥2时,f(x)在上的最小值为f(1)=(1-k)e.
(时间:20分钟)
11.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则的值为( )
A.- B.-2
C.-2或- D.2或-
答案 A
解析 由题意知,f′(x)=3x2+2ax+b,f′(1)=0,
f(1)=10,即解得或经检验满足题意,故=-.
12.已知函数f(x)=-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是( )
A.a>2 B.a<3
C.a≤1 D.a≥3
答案 C
解析 函数f(x)的定义域是(0,+∞),不等式-1+ln x≤0有解,即a≤x-xln x在(0,+∞)上有解,令h(x)=x-xln x,可得h′(x)=1-(ln x+1)=-ln x,令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h(x)=x-xln x取得最大值1,要使不等式a≤x-xln x在(0,+∞)上有解,只要a小于等于h(x)的最大值即可,即a≤1.所以选C.
13.设函数f(x)=
(1)若a=0,则f(x)的最大值为________;
(2)若f(x)无最大值,则实数a的取值范围是________.
答案 (1)2 (2)(-∞,-1)
解析 (1)若a=0,则f(x)=当x>0时,f(x)=-2x<0;当x≤0时,f′(x)=3x2-3=3(x-1)·(x+1),当x<-1时,f′(x)>0,f(x)是增函数,当-1<x<0时,f′(x)<0,f(x)是减函数,∴f(x)≤f(-1)=2.
∴f(x)的最大值为2.
(2)在同一平面直角坐标系中画出y=-2x和y=x3-3x的图象,如图所示,当a<-1时,f(x)无最大值;当-1≤a≤2时,f(x)max=2;当a>2时,f(x)max=a3-3a.
综上,当a∈(-∞,-1)时,f(x)无最大值.
14.已知函数f(x)=.
(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥恒成立,求实数k的取值范围.
解 (1)函数的定义域为(0,+∞),f′(x)==-.
令f′(x)=0,得x=1;
当x∈(0,1)时,f′(x)>0,f(x)单调递增;
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.
所以,x=1为极大值点,所以a<1<a+,
故<a<1,即实数a的取值范围为.
(2)当x≥1时,k≤,
令g(x)=,
则g′(x)==.
再令h(x)=x-ln x,则h′(x)=1-≥0,
所以h(x)≥h(1)=1,所以g′(x)>0,
所以g(x)为单调增函数,所以g(x)≥g(1)=2,故k≤2.
2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-10 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-10 word版含答案,共5页。试卷主要包含了已知函数f=x-1+eq \f等内容,欢迎下载使用。
2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-6 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-6 word版含答案,共4页。试卷主要包含了函数f=eq \r的定义域是,函数f=ln 的单调递减区间是等内容,欢迎下载使用。
2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-7 word版含答案: 这是一份2018版高考一轮总复习数学(文)模拟演练 第2章 函数、导数及其应用 2-7 word版含答案,共6页。试卷主要包含了函数y=eq \f的图象大致是,函数y=eq \f的图象大致为等内容,欢迎下载使用。

