数学八年级上册第三章 勾股定理3.3 勾股定理的简单应用公开课ppt课件
展开从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形.
已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长.
如图,有一个圆柱体,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的B处的食物,需要爬行的最短路程是多少?(π的值取3)
如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?
分析: 根据题意分析蚂蚁爬行的路线有三种情况(如图①②③),由勾股定理可求得图1中AC1爬行的路线最短.最短路线为5.
实验操作:1、(试验) 利用事先做好的圆柱体,尝试从A点到B点沿圆柱侧面画几条路线,你觉得哪条路线最短呢?
3、(计算) 蚂蚁从A点出发,想吃到B点上的食物,需要爬行的最短路程是多少?
2、(验证) 将圆柱侧面剪开展成一个长方形,从A点到B点的最短路线是什么?你画对了吗?
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得,BC2+AC2=AB2
即 52+ x2= (x+1)2
25+ x2= x2+2 x+1,
∴ x=12, x+1=13
答:水池的水深12尺,这根芦苇长13尺.
某初一(1)班的学生想知道学校旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回答用的是什么方法.
某中学初一学生参加军训活动,某日早晨8:00全体集合整装出发,他们以6千米/时的速度向东行走.李小明由于记错了时间,9:00到校后立即骑车以12千米/时的速度向北追赶队伍,上午11:00同学们到达目的地,李小明才发觉方向错了.问:(1)李小明现在要怎样走才能离同学们最近.请你与同伴交流,并画出示意图,说明理由.(2)若李小明“打的”以60千米/时的速度去追赶同学们,沿着你画的示意图,需要多长时间赶到目的地?
数学苏科版3.3 勾股定理的简单应用教课课件ppt: 这是一份数学苏科版3.3 勾股定理的简单应用教课课件ppt,共14页。PPT课件主要包含了SCSA+SB,探究1,变一变,小结1,探究2,探究3,S阴影S矩形S,小结2,练一练等内容,欢迎下载使用。
苏科版八年级上册第三章 勾股定理3.3 勾股定理的简单应用优秀课件ppt: 这是一份苏科版八年级上册第三章 勾股定理3.3 勾股定理的简单应用优秀课件ppt,共13页。PPT课件主要包含了议一议,练一练等内容,欢迎下载使用。
数学八年级上册第三章 勾股定理3.3 勾股定理的简单应用获奖ppt课件: 这是一份数学八年级上册第三章 勾股定理3.3 勾股定理的简单应用获奖ppt课件,共13页。PPT课件主要包含了复习引入,例题精析,练习巩固,自主小结,布置作业等内容,欢迎下载使用。