![人教版八年级数学上学期 第11章 三角形 单元练习第1页](http://img-preview.51jiaoxi.com/2/3/5747824/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上学期 第11章 三角形 单元练习第2页](http://img-preview.51jiaoxi.com/2/3/5747824/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版八年级数学上学期 第11章 三角形 单元练习第3页](http://img-preview.51jiaoxi.com/2/3/5747824/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版八年级上册第十一章 三角形综合与测试精品同步练习题
展开
这是一份初中数学人教版八年级上册第十一章 三角形综合与测试精品同步练习题,共8页。
一.选择题
1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )
A.B.
C.D.
2.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是( )
A.110°B.120°C.130°D.140°
3.如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠1﹣∠2=60°,则∠B的度数是( )
A.30°B.32°C.35°D.60°
4.将一副三角板按图中的方式叠放,则∠1的度数为( )
A.105°B.100°C.95°D.110°
5.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为( )
A.36°B.39°C.38°D.40°
6.若正多边形的一个外角是36°,则该正多边形的内角和为( )
A.360°B.720°C.900°D.1440°
7.“创卫工作,人人参与”我区园林工作者,为了把城市装扮得更加靓丽,用若干相同的花盆按一定的规律组成不同的正多边形图案.如图,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆…则第8个图形中一共有花盆的个数为( )
A.56B.64C.72D.90
8.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是( )
A.22.5°B.45°C.67.5°D.135°
二.填空题
9.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= .
10.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的 性;而活动挂架是四边形结构,这是利用四边形的 性.
11.若线段AD是△ABC的中线,且BD=3,则BC长为 .
12.一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的,则这个锐角三角形三个内角的度数为 .
13.如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
14.在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是 度.
三.解答题
15.已知三角形的两边a=3,b=7,若第三边c的长为偶数,求其周长.
16.45°和60°的两个三角板拼成四边形ABCD,求四边形ABCD各个角的度数,并猜想四边形四个内角的和是多少度.
17.如图1,已知线段AB、CD相交于点O,连接AC、BD.
(1)求证:∠A+∠C=∠B+∠D;
(2)如图2,∠CAB与∠BDC的平分线AP、DP相交于点P,求证:∠B+∠C=2∠P.
18.直线EF、GH之间有一个直角三角形ABC,其中∠BAC=90°,∠ABC=α.
(1)如图1,点A在直线EF上,B、C在直线GH上,若∠α=60°,∠FAC=30°.试说明:EF∥GH;
(2)将三角形ABC如图2放置,直线EF∥GH,点C、B分别在直线EF、GH上,且BC平分∠ABH.求∠ECA的度数;(用α的代数式表示)
(3)在(2)的前提下,直线CD平分∠FCA交直线GH于D,如图3.在α取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化请求出变化的范围.
19.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.
(1)当α=40°时,∠BPC= °,∠BQC= °;
(2)当α= °时,BM∥CN;
(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;
(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系: .
参考答案
一.选择题
1. A.
2. B.
3. A.
4. A.
5. A.
6. D.
7. D.
8. A.
二.填空题
9.∠CHD=45°.
10.利用四边形的不稳定性.
11.6.
12. 17°,78°,85°.
13. 360°.
14. 130°.
三.解答题
15.解:∵三角形的两边a=3,b=7,第三边c,
∴根据三角形三边关系可得:4<c<10,
因为第三边c的长为偶数,
所以c取6或8,
则其周长为:6+3+7=16或8+3+7=18.
16.解:如图,根据直角三角板的内角的度数知:
∠DAB=45°+30°=75°,
∠DCB=45°+60°=105°,
∠D=∠B=90°,
猜想:四边形的内角和为360°.
17.证明:(1)在△AOC中,∠A+∠C=180°﹣∠AOC,
在△BOD中,∠B+∠D=180°﹣∠BOD,
∵∠AOC=∠BOD,
∴∠A+∠C=∠B+∠D;
(2)在AP、CD相交线中,有∠CAP+∠C=∠P+∠CDP,
在AB、DP相交线中,有∠B+∠BDP=∠P+∠BAP,
∴∠B+∠C+∠CAP+∠BDP=2∠P+∠CDP+∠BAP,
∵AP、DP分别平分∠CAB、∠BDC,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∴∠B+∠C=2∠P.
18.(1)证明:∵∠EAB=180°﹣∠BAC﹣∠FAC,∠BAC=90°,∠FAC=30°,
∴∠EAB=60°,
又∵∠ABC=60°,
∴∠EAB=∠ABC,
∴EF∥GH;
(2)解:∵∠BAC=90°,∠ABC=α.
∴∠ACB=90°﹣α,
∵BC平分∠ABH,
∴∠ABC=∠HBC=α,
∵EF∥GH,
∴∠ECB=∠HBC=α,
∴∠ECA=∠ECB﹣∠ACB=α﹣(90°﹣α)=2α﹣90°;
(3)解:不发生变化,
理由是:经过点A作AM∥GH,
又∵EF∥GH,
∴AM∥EF∥GH,
∴∠FCA+∠CAM=180°,∠MAB+∠ABH=180°,∠CBH=∠ECB,
又∵∠CAM+∠MAB=∠BAC=90°,
∴∠FCA+∠ABH=270°,
又∵BC平分∠ABH,CD平分∠FCA,
∴∠FCD+∠CBH=135°,
又∵∠CBH=∠ECB,即∠FCD+∠ECB=135°,
∴∠BCD=180°﹣(∠FCD+∠ECB)=45°.
19.解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,
∴∠DBC+∠BCE=180°+∠A=220°,
∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,
∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,
∴∠BPC=180°﹣110°=70°,
∵BQ、CQ分别是∠PBC、∠PCB的角平分线,
∴∠QBC=∠PBC,∠QCB=∠PCB,
∴∠QBC+∠QCB=55°,
∴∠BQC=180°﹣55°=125°;
(2)∵BM∥CN,
∴∠MBC+∠NCB=180°,
∵BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α,
∴(∠DBC+∠BCE)=180°,
即(180°+α)=180°,
解得α=60°;
(3)∵α=120°,
∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,
∴∠BOC=225°﹣180°=45°;
(4)∵α>60°,
∠BPC=90°﹣α、
∠BQC=135°﹣α、
∠BOC=α﹣45°.
∠BPC、∠BQC、∠BOC三角之间的数量关系:∠BPC+∠BQC+∠BOC=(90°﹣α)+(135°﹣α)+(α﹣45°)=180°.
故答案为:70,125;60;∠BPC+∠BQC+∠BOC=180°.
相关试卷
这是一份初中数学第十二章 全等三角形综合与测试同步达标检测题,共8页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份数学八年级上册第十一章 三角形综合与测试课时练习,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学第十一章 三角形综合与测试课后练习题,共9页。试卷主要包含了如图能说明∠1>∠2的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)