![2020年人教版九年级数学上册24.2.1《点和圆的位置关系》同步练习(含答案)01](http://img-preview.51jiaoxi.com/2/3/5746741/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年人教版九年级数学上册24.2.1《点和圆的位置关系》同步练习(含答案)02](http://img-preview.51jiaoxi.com/2/3/5746741/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年人教版九年级数学上册24.2.1《点和圆的位置关系》同步练习(含答案)03](http://img-preview.51jiaoxi.com/2/3/5746741/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系精品练习题
展开24.2.1《点和圆的位置关系》同步练习
一.选择题
1.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )
A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断
2.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是( )
A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定
3.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是( )
A.2B.4C.2 或4D.8
4.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是( )
A.3<r<4B.3<r<5C.3≤r≤5D.r>4
5.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是( )
A.5B.6C.7D.8
6.如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是( )
A.(1,2) B.(2,3.2) C.(3,3﹣) D.(4,4+)
7.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有( )
A.1个B.2个C.3个D.4个
8.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( )
A.①B.②C.③D.④
9.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为( )
A.(6,8)B.(4,5)C.(4,)D.(4,)
10.如图所示,△ABC内接于⊙O,C为弧AB的中点,D为⊙O上一点,∠ACB=100°,则∠ADC的度数等于( )
A.40°B.39°C.38°D.36°
11.三角形的外心是( )
A.三条边中线的交点
B.三条边高的交点
C.三条边垂直平分线的交点
D.三个内角平分线的交点
12.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠ACD=40°,则∠BAD的大小为( )
A.35°B.50°C.40°D.60°
13.如图,已知⊙O的半径为3,△ABC内接于⊙O,∠ACB=135°,则AB的长为( )
A.3B.C.D.4
14.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )
A.四边形中至多有一个内角是钝角或直角
B.四边形中所有内角都是锐角
C.四边形的每一个内角都是钝角或直角
D.四边形中所有内角都是直角
15.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设( )
A.有一个内角小于90°
B.每一个内角都小于90°
C.有一个内角小于或等于90°
D.每一个内角都大于90°
二.填空题
16.圆外一点到圆的最大距离为9cm,最小距离为4cm,则圆的半径是 cm.
17.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为 .
18.已知圆内一点P到圆上的最长距离为6cm,最短距离为2cm,则圆的半径为 cm.
19.如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 .
20.已知直线l:y=x﹣4,点A(1,0),点B(0,2),设点P为直线l上一动点,当点P的坐标为 时,过P、A、B不能作出一个圆.
21.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,则AE的长度是 .
22.如图,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB于点D,OE⊥AC于点E,若DE=2,则BC= .
23.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标 .
三.解答题
24.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.
(1)请完成以下操作:
①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;
(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .
25.已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.
(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数.
(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.
26.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.
27.操作与探究
我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件.
(1)分别测量图1、2、3各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.
(2)如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合图4、5的两个图说明其中的道理.(提示:考虑∠B+∠D与180°之间的关系)
由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.
28.问题:我们知道,过任意的一个三角形的三个顶点能做一个圆,这个圆叫做三角形的外接圆,那么任意的一个四边形有外接圆吗?
探索:如图给出了一些四边形,填写出你认为有外接圆的图形序号 ;
发现:相对的内角之间满足什么关系时,四边形一定有外接圆?写出你的发现: ;
说理:如果四边形没有外接圆,那么相对的两个内角之间有上面的关系吗?请结合图④说明理由.
29.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)求证:PD=PF;
(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.
参考答案
1.B.
2.B.
3.C.
4.D.
6.D.
7.C.
8.D.
9.C.
10.A.
11.C.
12.B.
13.B.
14.B.
15.B.
16.答案为:2.5.
17.答案为:10.
18.答案为:4.
19.答案为:5.
20.答案为(2,﹣2)
21.答案为3.
22.答案为:4
23.答案为:(5,2).
24.解:(1)①平面直角坐标系如图所示:
②圆心点D,如图所示;
(2)⊙D的半径=AD==2,
∵点(6,﹣2)到圆心D的距离==2=半径,
∴点(6,﹣2)在⊙D上.观察图象可知:∠ADC=90°,
故答案为:2,上,90°.
25.解:(Ⅰ)如图1,连接OC、OD,
∵CD=1,OC=OD=1,
∴△OCD为等边三角形,
∴∠COD=60°,
∴∠CBD=∠COD=30°,
∵AB为直径,
∴∠ADB=90°,
∴∠AEB=90°﹣∠DBE=90°﹣30°=60°;
(Ⅱ)如图2,连接OC、OD,同理可得∠CBD=30°,∠ADB=90°,
∴∠AEB=90°+∠DBE=90°+30°=120°.
26.证明:如图所示,取BC的中点F,连接DF,EF.
∵BD,CE是△ABC的高,
∴△BCD和△BCE都是直角三角形.
∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,
∴DF=EF=BF=CF.
∴E,B,C,D四点在以F点为圆心, BC为半径的圆上.
27.解:(1)对角互补(对角之和等于180°);
∵矩形、正方形的对角线相等且互相平分,
∴四个顶点到对角线交点距离相等,
∴矩形、正方形的四个顶点可在同一个圆上;
四个顶点在同一个圆上的四边形的对角互补.
(2)图4中,∠B+∠D<180°.
图5中,∠B+∠D>180°.
过四边形的四个顶点能作一个圆的条件是:对角互补(对角之和等于180°).
28.解:探索:矩形有外接圆;故答案为②;
发现:对角互补的四边形一定有外接圆;
故答案为对角互补的四边形一定有外接圆;
说理:如果四边形没有外接圆,那么相对的两个内角之间没有有上面的关系.
图④左:连接BE,∵∠A+∠E=180°,∠BCD>∠E,∴∠A+∠BCD>180°;
图④右:连接DE,∵∠A+∠BED=180°,∠BED>∠C,∴∠A+∠C<180°.
29.(1)证明:∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA,
∵AB是⊙O的直径,DE⊥AB,
∴∠ADB=∠AED=90°,
∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,
∴∠ADE=∠DBA,
∴∠DAC=∠ADE,
∴∠DAC=∠DBA;
(2)证明:∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠DFA+∠DAC=90°,
又∵∠ADE=∠DAP,
∴∠PDF=∠PFD,
∴PD=PF;
(3)解:连接CD,
∵∠CBD=∠DBA,
∴CD=AD,
∵CD=3,∴AD=3,
∵∠ADB=90°,
∴AB=5,
故⊙O的半径为2.5,
∵DE×AB=AD×BD,
∴5DE=3×4,
∴DE=2.4.
即DE的长为2.4.
初中数学人教版九年级上册24.1.1 圆精品练习题: 这是一份初中数学人教版九年级上册24.1.1 圆精品练习题,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学24.2.1 点和圆的位置关系一课一练: 这是一份初中数学24.2.1 点和圆的位置关系一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册24.2.1 点和圆的位置关系课时训练: 这是一份人教版九年级上册24.2.1 点和圆的位置关系课时训练,共71页。试卷主要包含了判定点和圆的位置关系,由点和圆的位置关系求半径,三角形换外接圆,三角形外心位置,特殊三角形外接圆半径,由三角形外心的位置判断形状,判断确定圆的条件,尺规定作图-确定圆等内容,欢迎下载使用。