初中数学人教版八年级上册第十三章 轴对称综合与测试精品练习
展开、选择题
LISTNUM OutlineDefault \l 3 如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)
C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2
LISTNUM OutlineDefault \l 3 如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=( )
A.60° B.70° C.80° D.90°
LISTNUM OutlineDefault \l 3 附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
A.3:2 B.5:3 C.8:5 D.13:8
LISTNUM OutlineDefault \l 3 如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中( )
A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD
LISTNUM OutlineDefault \l 3 如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
A.44° B.60° C.67° D.77°
LISTNUM OutlineDefault \l 3 如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
A.12 B.4 C.8 D.不确定
LISTNUM OutlineDefault \l 3 如图,已知下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是( )
A.①③④ B.①②③④ C.①②④ D.①③
LISTNUM OutlineDefault \l 3 等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是( )
A.25° B.40° C.25°或40° D.不能确定
LISTNUM OutlineDefault \l 3 如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A.2 B.4 C.5 D.无数
LISTNUM OutlineDefault \l 3 在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角∠B的大小为多少度?( )
A.20° B.60°或20° C.65°或25° D.60°
LISTNUM OutlineDefault \l 3 如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为( )
A.20° B.25° C.30° D.40°
LISTNUM OutlineDefault \l 3 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )
A.102° B.100° C.88° D.92°
、填空题
LISTNUM OutlineDefault \l 3 如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为 .
LISTNUM OutlineDefault \l 3 如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=_______.
LISTNUM OutlineDefault \l 3 如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC= .
LISTNUM OutlineDefault \l 3 如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,
则∠DCE的大小为 (度).
LISTNUM OutlineDefault \l 3 在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有 个.
LISTNUM OutlineDefault \l 3 等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是 .
、解答题
LISTNUM OutlineDefault \l 3 (1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.
LISTNUM OutlineDefault \l 3 如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.
LISTNUM OutlineDefault \l 3 已知:如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.
请你说明DA﹣DB=DC.
LISTNUM OutlineDefault \l 3 如图,△ABC是等边三角形,D、E分别是BC、AC上的点,BD=CE,求∠AFE的度数.
LISTNUM OutlineDefault \l 3 如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并说明理由.
LISTNUM OutlineDefault \l 3 如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论.
、作图题
LISTNUM OutlineDefault \l 3 要在河边修建一个水泵站,分别向张村、李庄送水(如图). 修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由.
、综合题
LISTNUM OutlineDefault \l 3 如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
参考答案
LISTNUM OutlineDefault \l 3 \s 1 答案为:A.
LISTNUM OutlineDefault \l 3 D
LISTNUM OutlineDefault \l 3 A
LISTNUM OutlineDefault \l 3 B
LISTNUM OutlineDefault \l 3 C
LISTNUM OutlineDefault \l 3 C
LISTNUM OutlineDefault \l 3 答案为:A.
LISTNUM OutlineDefault \l 3 C
LISTNUM OutlineDefault \l 3 C
LISTNUM OutlineDefault \l 3 C
LISTNUM OutlineDefault \l 3 D
LISTNUM OutlineDefault \l 3 D
LISTNUM OutlineDefault \l 3 答案为:100°.
LISTNUM OutlineDefault \l 3 答案为:2α.
LISTNUM OutlineDefault \l 3 解答: 解:过P的作关于OB的对称点P',作P′C⊥OA于C,交OB于D,此时PD=PD′,根据点到直线的距离最短可知PD+DC=P′C最短,
∵∠PDB=∠P′DB,∠CDO=∠P′DB,
∴∠CDO=∠PDB,
∵P′C⊥OA,∠AOB=α,
∴∠CDO=90°﹣α,
∴∠PDC=180°﹣2(90°﹣α)=2α.
故答案为:2α.
LISTNUM OutlineDefault \l 3 答案为:45.
LISTNUM OutlineDefault \l 3 答案为:8.
LISTNUM OutlineDefault \l 3 答案为:36°或90°.
LISTNUM OutlineDefault \l 3 解:(1)如图1,作C关于直线AB的对称点C′,
连接C′D交AB于点P.则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接CP′、DP′.
∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,
而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′
∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;
(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,
∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;
(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,
则点E,F就是所要求作的点.
理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,
∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.
LISTNUM OutlineDefault \l 3 解:∵DE=EB∴设∠BDE=∠ABD=x,
∴∠AED=∠BDE+∠ABD=2x,
∵AD=DE,∴∠AED=∠A=2x,
∴∠BDC=∠A+∠ABD=3x,
∵BD=BC,
∴∠C=∠BDC=3x,
∵AB=AC,
∴∠ABC=∠C=3x,
在△ABC中,3x+3x+2x=180°,解得x=22.5°,
∴∠A=2x=22.5°×2=45°.
LISTNUM OutlineDefault \l 3 证明:△ABC和△BDE都是等边三角形,
∴AB=BC,BE=BD=DE(等边三角形的边相等),
∠ABC=∠EBD=60°(等边三角形的角是60°).
∴∠ABC﹣∠EBC=∠EBD﹣∠EBC
∠ABE=CBD (等式的性质),
在△ABE和△CBD中,,
∴△ABE≌△CBD(SAS)
∴AE=DC(全等三角形的对应边相等).
∵AD﹣DE=AE(线段的和差)
∴AD﹣BD=DC(等量代换).
LISTNUM OutlineDefault \l 3 解;△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°.
在△ABD和△BCE中,,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE.
由三角形弯角的性质得∠AFE=∠BAF+∠ABF,
∠AFE=∠CBE+∠ABF=60°.
LISTNUM OutlineDefault \l 3 解:(1)∵BG∥AC,
∴∠DBG=∠DCF.
∵D为BC的中点,
∴BD=CD
又∵∠BDG=∠CDF,在△BGD与△CFD中,
∵
∴△BGD≌△CFD(ASA).
∴BG=CF.
(2)BE+CF>EF.
∵△BGD≌△CFD,
∴GD=FD,BG=CF.
又∵DE⊥FG,
∴EG=EF(垂直平分线到线段端点的距离相等).
∴在△EBG中,BE+BG>EG,
即BE+CF>EF.
LISTNUM OutlineDefault \l 3 解:CD=2BE,理由为:延长BE交CA延长线于F,
∵CD平分∠ACB,∴∠FCE=∠BCE,
在△CEF和△CEB中,,∴△CEF≌△CEB(ASA),∴FE=BE,
∵∠DAC=∠CEF=90°,∴∠ACD+∠F=∠ABF+∠F=90°,∴∠ACD=∠ABF,
在△ACD和△ABF中,,∴△ACD≌△ABF(ASA),
∴CD=BF,∴CD=2BE.
LISTNUM OutlineDefault \l 3 【解答】解:先作点B关于河岸的对称点,然后连接此对称点与点A,交河岸于点P,点P即为所求.
LISTNUM OutlineDefault \l 3 解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QPC=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+BC=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=0.5QC,即6﹣x=0.5(6+x),解得x=2,
∴AP=2;
(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,
∵∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴△APE≌△BQF(AAS),
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=0.5EF,
∵EB+AE=BE+BF=AB,
∴DE=0.5AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.
初中数学人教版八年级上册第十三章 轴对称13.1 轴对称13.1.1 轴对称测试题: 这是一份初中数学人教版八年级上册第十三章 轴对称13.1 轴对称13.1.1 轴对称测试题,文件包含第13章轴对称培优卷原卷版docx、第13章轴对称培优卷解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
八年级上册13.1.1 轴对称课后练习题: 这是一份八年级上册13.1.1 轴对称课后练习题,文件包含131轴对称培优解析版docx、131轴对称培优原卷版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
数学八年级上册第二章 轴对称图形综合与测试单元测试课后练习题: 这是一份数学八年级上册第二章 轴对称图形综合与测试单元测试课后练习题,共8页。试卷主要包含了8第2章轴对称图形单元测试,5C.5或6等内容,欢迎下载使用。