![人教版八年级上册数学全册教案14.2.2 完全平方公式(一)第1页](http://img-preview.51jiaoxi.com/2/3/5698499/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中人教版14.2.2 完全平方公式教案及反思
展开
这是一份初中人教版14.2.2 完全平方公式教案及反思,共3页。教案主要包含了创设情境,导入新知,范例学习,应用所学,随堂练习,巩固新知等内容,欢迎下载使用。
课题
14.2.2 完全平方公式(一)
课 型
新授课
课 时
1
教学
目标
1.知识与技能
会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力.
2.过程与方法
利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式.掌握完全平方公式的计算方法.
3.情感、态度与价值观
培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.
教 学
重 点
难 点
1.重点:完全平方公式的推导和应用.
2.难点:完全平方公式的应用
教 学
准 备
课件、同步活页、 制作边长为a和b的正方形以及长为a宽为b的纸板.
教
学
过
程
一、创设情境,导入新知
【激趣辅垫】
寓言故事:请一位学生讲一讲《滥竽充数》的寓言故事.
【学生活动】由一位学生上讲台讲《滥竽充数》的寓言故事,其他学生补充.
【教师活动】提出:你们从故事中学到了什么道理?(寓德于教)【学生发言】比喻没有真才实学的人,混在行家里充数,或以次货充好货.
【教师引导】对!所以我们在以后的学习和工作中,千万别滥竽充数,一定要有真才实学.好.今天同学们喊得很响亮,我要看看有没有南郭先生,请同学们完成下面的几道题:
(1)(2x-3)2; (2)(x+y)2; (3)(m+2n)2; (4)(2x-4)2.
【学生活动】先独立完成以上练习,再争取上讲台演练,
(1)(2x-3)2=4x2-12x+9; (2)(x+y)2=x2+2xy+y2;
(3)(m+2n)2=m2+4mn+4n2; (4)(2x-4)2=4x2-16x+16.
【教师活动】组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点.
【学生活动】分四人小组,讨论.观察,探讨,发现规律如下:(1)右边第一项是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的2倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,它们两个乘积的2倍就为“-”号,其余都为“+”号.
【教师提问】那我们就利用简单的(a+b)2与(a-b)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算.
【学生活动】计算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,一位学生上讲台板演.
【教师活动】利用学生的板演内容,引出本节课的教学内容──完全平方公式.
归纳:完全平方公式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
语言叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
为了让学生直观理解公式,可做下面的拼图游戏.
【拼图游戏】
解释:(1)现有图1所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.
(2)你能根据图2,谈一谈(a-b)2=a2-2ab+b2吗?
【课堂活动】第(1)题由小组合作,在互动中完成拼图游戏,比一比,哪个四人小组快?第(2)题,可以借助多媒体课件,直观地演示面积的变化,帮助学生联想到
(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.
二、范例学习,应用所学
【例1】运用完全平方公式计算:
(1)(-x-y)2; (2)(2y-)2
(1)解法一:(-x-y)2=[(-x)+(-y)] 2
=(-x)2+2(-x)(-y)+(-y)2
=x2+2xy+y2;
解法二:(-x-y)2=[-(x+y)] 2=(x+y)2=x2+2xy+y2.
(2)解法一:(2y-)2=(2y)2-2·2y·+()2
=4y2-y+.
解法二:(2y-)2=[2y+(-)] 2
=(2y)2+2·2y·(-)+(-)2
=4y2-y+.
【例2】运用乘法公式计算99992.
解:99992=(104-1)2=108-2×104+1
=100000000-20000+1
=99980001.
三、随堂练习,巩固新知
【基础训练】
(1)(-)2; (2)(2xy+3)2;
(3)(-ab+)2; (4)(7ab+2)2.
【拓展训练】
(1)(-2x-3)2; (2)(2x+3)2;
(3)(2x-3)2; (4)(3-2x)2.
作 业
布 置
同步活页练习
课堂总结
本节课学习了(a±b)2=a2±2ab+b2,两个乘法公式,在应用时,(1)要了解公式的结构和特征.让住每一个公式左右两边的形式特征,记准指数和系数的符号;(2)掌握公式的几何意义;(3)弄清公式的变化形式;(4)注意公式在应用中的条件;(5)应灵活地应用公式来解题.
相关教案
这是一份初中数学人教版八年级上册14.2.2 完全平方公式教案,共7页。教案主要包含了教材分析,教法与学法,教学过程,设计说明与评价,作业等内容,欢迎下载使用。
这是一份人教版八年级上册14.2.2 完全平方公式获奖教案,共3页。教案主要包含了教学目标,重点难点,教学过程等内容,欢迎下载使用。
这是一份人教版八年级上册14.2.2 完全平方公式教案及反思,共5页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)