搜索
    上传资料 赚现金
    第3章 3.1.3 第1课时 奇偶性的概念 教案
    立即下载
    加入资料篮
    第3章 3.1.3 第1课时 奇偶性的概念 教案01
    第3章 3.1.3 第1课时 奇偶性的概念 教案02
    第3章 3.1.3 第1课时 奇偶性的概念 教案03
    还剩5页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学人教B版 (2019)第三章 函数3.1 函数的概念与性质3.1.3 函数的奇偶性精品第1课时教案

    展开
    这是一份数学人教B版 (2019)第三章 函数3.1 函数的概念与性质3.1.3 函数的奇偶性精品第1课时教案,共8页。

    第1课时 奇偶性的概念








    函数的奇偶性


    思考:具有奇偶性的函数,其定义域有何特点?


    提示:定义域关于原点对称.





    1.下列函数是偶函数的是( )


    A.y=x B.y=2x2-3


    C.y=eq \f(1,\r(x)) D.y=x2,x∈[0,1]


    B [选项C、D中函数的定义域不关于原点对称,选项A中的函数是奇函数,故选B.]


    2.下列图像表示的函数具有奇偶性的是( )





    A B C D


    B [B选项的图像关于y轴对称,是偶函数,其余选项中的图像都不具有奇偶性.]


    3.函数y=f(x),x∈[-1,a](a>-1)是奇函数,则a等于( )


    A.-1 B.0 C.1 D.无法确定


    C [∵奇函数的定义域关于原点对称,∴a-1=0,即a=1.]


    4.若f(x)为R上的偶函数,且f(2)=3,则f(-2)=________.


    3 [∵f(x)为R上的偶函数,∴f(-2)=f(2)=3.]





    【例1】 判断下列函数的奇偶性:


    (1)f(x)=x3+x;


    (2)f(x)=eq \r(1-x2)+eq \r(x2-1);


    (3)f(x)=eq \f(2x2+2x,x+1);


    (4)f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x-1,x<0,,0,x=0,,x+1,x>0.))


    [解] (1)函数的定义域为R,关于原点对称.


    又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),


    因此函数f(x)是奇函数.


    (2)由eq \b\lc\{\rc\ (\a\vs4\al\c1(1-x2≥0,,x2-1≥0))得x2=1,即x=±1.


    因此函数的定义域为{-1,1},关于原点对称.


    又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数.


    (3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),


    不关于原点对称,所以f(x)既不是奇函数也不是偶函数.


    (4)函数f(x)的定义域为R,关于原点对称.


    f(-x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x-1,-x<0,,0,-x=0,,-x+1,-x>0,))


    即f(-x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x+1,x>0,,0,x=0,,-x-1,x<0.))


    于是有f(-x)=-f(x).所以f(x)为奇函数.





    判断函数奇偶性的两种方法


    (1)定义法:





    (2)图像法:











    1.下列函数中,是偶函数的有________.(填序号)


    ①f(x)=x3;②f(x)=|x|+1;③f(x)=eq \f(1,x2);


    ④f(x)=x+eq \f(1,x);⑤f(x)=x2,x∈[-1,2].


    ②③ [对于①,f(-x)=-x3=-f(x),则为奇函数;


    对于②,f(-x)=|-x|+1=|x|+1,则为偶函数;


    对于③,定义域为{x|x≠0},关于原点对称,f(-x)=eq \f(1,-x2)=eq \f(1,x2)=f(x),则为偶函数;


    对于④,定义域为{x|x≠0},关于原点对称,f(-x)=-x-eq \f(1,x)=-f(x),则为奇函数;


    对于⑤,定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.]








    【例2】 已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图像如图所示.





    (1)画出在区间[-5,0]上的图像;


    (2)写出使f(x)<0的x的取值集合.


    [解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图像关于原点对称.





    由y=f(x)在[0,5]上的图像,可知它在[-5,0]上的图像,如图所示.


    (2)由图像知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).





    (变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.


    [解] (1)如图所示





    (2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).





    巧用奇、偶函数的图像求解问题


    1依据:奇函数⇔图像关于原点对称,偶函数⇔图像关于y轴对称.


    2求解:根据奇、偶函数图像的对称性可以解决诸如求函数值或画出奇偶函数图像的问题.








    2.如图是函数f(x)=eq \f(1,x2+1)在区间[0,+∞)上的图像,请据此在该坐标系中补全函数f(x)在定义域内的图像,并说明你的作图依据.





    [解] 因为f(x)=eq \f(1,x2+1),所以f(x)的定义域为R.又对任意x∈R,都有f(-x)=eq \f(1,-x2+1)=eq \f(1,x2+1)=f(x),所以f(x)为偶函数.所以f(x)的图像关于y轴对称,其图像如图所示.








    [探究问题]


    1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?


    提示:由f(-x)+f(x)=0得f(-x)=-f(x),


    ∴f(x)为奇函数.


    由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.


    2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?


    提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.


    【例3】 (1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;


    (2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.


    [思路点拨]








    (1)eq \f(1,3) 0 (2)7 [(1)因为偶函数的定义域关于原点对称,所以a-1=-2a,解得a=eq \f(1,3).


    又函数f(x)=eq \f(1,3)x2+bx+b+1为二次函数,结合偶函数图像的特点,易得b=0.


    (2)令g(x)=x7-ax5+bx3+cx,则g(x)是奇函数,


    ∴f(-3)=g(-3)+2=-g(3)+2,又f(-3)=-3,


    ∴g(3)=5.


    又f(3)=g(3)+2,所以f(3)=5+2=7.]





    利用奇偶性求参数的常见类型及策略


    1定义域含参数:奇、偶函数fx的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.


    2解析式含参数:根据f-x=-fx或f-x=fx列式,比较系数即可求解.








    3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.


    4 [法一:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,f(-x)=(-x+a)(-x-4)=x2-(a-4)x-4a,两式恒相等,则a-4=0,即a=4.


    法二:f(x)=(x+a)(x-4)=x2+(a-4)x-4a,要使函数为偶函数,只需多项式的奇次项系数为0,即a-4=0,则a=4.


    法三:根据二次函数的奇偶性可知,形如f(x)=ax2+c的都是偶函数,因而本题只需将解析式看成是平方差公式,则a=4.]





    1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).


    2.函数的奇偶性是其相应图像特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.





    1.思考辨析


    (1)函数f(x)=x2,x∈[0,+∞)是偶函数.( )


    (2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )


    (3)不存在既是奇函数,又是偶函数的函数.( )


    (4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )


    [答案] (1)× (2)× (3)× (4)×


    2.函数f(x)=|x|+1是( )


    A.奇函数 B.偶函数


    C.既是奇函数又是偶函数 D.非奇非偶函数


    B [∵f(-x)=|-x|+1=|x|+1=f(x),


    ∴f(x)为偶函数.]


    3.已知函数f(x)=ax2+2x是奇函数,则实数a=______.


    0 [∵f(x)为奇函数,∴f(-x)+f(x)=0,∴2ax2=0对任意x∈R恒成立,所以a=0.]


    4.已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图像,如图所示.





    (1)请补充完整函数y=f(x)的图像;


    (2)根据图像写出函数y=f(x)的增区间;


    (3)根据图像写出使f(x)<0的x的取值集合.


    [解] (1)由题意作出函数图像如图:





    (2)据图可知,单调增区间为(-1,0),(1,+∞).


    (3)据图可知,使f(x)<0的x的取值集合为(-2,0)∪(0,2).





    学 习 目 标
    核 心 素 养
    1.理解奇函数、偶函数的定义.


    2.了解奇函数、偶函数图像的特征.


    3.掌握判断函数奇偶性的方法.
    1.借助奇(偶)函数的特征,培养直观想象素养.


    2.借助函数奇、偶的判断方法,培养逻辑推理素养.
    奇偶性
    偶函数
    奇函数
    条件
    设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D
    结论
    f(-x)=f(x)
    f(-x)=-f(x)
    图像特点
    关于y轴对称
    关于原点对称
    函数奇偶性的判断
    奇偶函数的图像问题
    利用函数的奇偶性求值
    相关学案

    高中数学3.2 函数的基本性质第1课时学案: 这是一份高中数学3.2 函数的基本性质第1课时学案,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共7页, 欢迎下载使用。

    苏教版 (2019)必修 第一册第5章 函数概念与性质5.4 函数的奇偶性第1课时导学案: 这是一份苏教版 (2019)必修 第一册第5章 函数概念与性质5.4 函数的奇偶性第1课时导学案,共13页。学案主要包含了函数的奇偶性的概念及判断,利用函数的奇偶性求值等内容,欢迎下载使用。

    高中数学第三章 函数概念与性质3.2 函数的基本性质第1课时导学案: 这是一份高中数学第三章 函数概念与性质3.2 函数的基本性质第1课时导学案,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第3章 3.1.3 第1课时 奇偶性的概念 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map