数学3 勾股定理的应用课后测评
展开1.3 勾股定理的应用 同步练习
一.选择题(共8小题)
1.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是( )
A.P→AB.P→BC.P→CD.P→D
2.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A.B.C.D.
3.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )
A.3B.5C.4.2D.4
4.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为( )
A.10米B.6米C.7米D.8米
5.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为( )尺.
A.10B.12C.13D.14
6.如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是( )
A.9mB.14mC.11mD.10m
7.已知一轮船以18海里/小时的速度从港口A出发向西南方向航行,另一轮船以24海里/小时的速度同时从港口A出发向东南方向航行,离开港口1.5h后,两轮船相距( )
A.30海里B.35海里C.40海里D.45海里
8.如图,圆柱的底面半径是4,高是5,一只在A点的蚂蚁想吃到B点的食物,需要爬行的最短路径是(π取3)( )
A.9B.13C.14D.25
二.填空题(共4小题)
9.如图,学校需要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到了地面,并多出了一段.同学们首先测量了多出的这段绳子长度为1m,然后将这根绳子拉直,当绳子的另一端和地面接触时,绳子与旗杆的底端距离恰好为5m,利用勾股定理求出旗杆的高度约为 m.
10.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.
11.如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是 .
12.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为 cm.
三.解答题(共6小题)
13.如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?
14.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?
15.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?
16.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
17.如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A1处,经过测量A1C=2m,求弯折点B与地面的距离.
18.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在一条直线上),并新修一条路CH测得BC=5千米,CH=4干米,BH=3千米,
(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;
(2)求原来路线AC的长.
参考答案
一.选择题(共8小题)
1.解:由题意得:蚂蚁爬行距离最短的路线是P→D;
故选:D.
2.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选:D.
3.解:如图所示:
由题意得:∠AOB=90°,
设折断处离地面的高度OA是x尺,
由勾股定理得:x2+42=(10﹣x)2,
解得:x=4.2,
即:折断后的竹子高度OA为4.2尺.
故选:C.
4.解:由题意得:AC=BD=2米,
∵AO=8米,
∴CO=6米,
设BO=x米,则DO=(x+2)米,由题意得:
62+(x+2)2=82+x2,
解得:x=6,
AB==10(米),
故选:A.
5.解:设水深为x尺,则芦苇长为(x+1)尺,
根据勾股定理得:x2+()2=(x+1)2,
解得:x=12,
芦苇的长度=x+1=12+1=13(尺),
答:芦苇长13尺.
故选:C.
6.解:如图,作BD⊥OC于点D,
由题意得:AO=BD=3m,AB=OD=2m,
∵OC=6m,
∴DC=4m,
∴由勾股定理得:BC===5(m),
∴大树的高度为5+5=10(m),
故选:D.
7.解:如图,连接BC.
∵两船行驶的方向是东北方向和东南方向,
∴∠BAC=90°,
两小时后,两艘船分别行驶了24×1.5=36(海里),18×1.5=27(海里),
根据勾股定理得:BC===45(海里).
故选:D.
8.解:展开圆柱的半个侧面是矩形,
矩形的长是圆柱的底面周长的一半,即4π≈12,矩形的宽是圆柱的高5.
根据两点之间线段最短,
知最短路程是矩形的对角线的长,即=13.,
故选:B.
二.填空题(共4小题)
9.解:设旗杆的高度AC为x米,则绳子AB的长度为(x+1)米,
在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,
解得,x=12.
答:旗杆的高度为12米.
10.解:设折断处离地面x尺,
根据题意可得:x2+32=(10﹣x)2,
解得:x=4.55.
答:折断处离地面4.55尺.
故答案为:4.55.
11.解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,
则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,
AC=×2π×24=24π,∠C=90°,BC=7π,
由勾股定理得:AB==25π.
故答案为:25π.
12.解:设在杯里部分长为xcm,
则有:x2=32+42,
解得:x=5,
所以露在外面最短的长度为7cm﹣5cm=2cm,
故吸管露出杯口外的最短长度是2cm,
故答案为:2.
三.解答题(共6小题)
13.解:设AE=xkm,则BE=(80﹣x)km,
∵AD⊥AB,BC⊥AB,
∴△ADE和△BCE都是直角三角形,
∴DE2=AD2+AE2,CE2=BE2+BC2,
又∵AD=50,BC=30,DE=CE,
∴502+x2=(80﹣x)2+302,
解得x=30.
答:5G信号塔E应该建在离A乡镇30千米的地方.
14.解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.
则有CA=DA=100m,
在Rt△ABC中,CB==60(m),
∴CD=2CB=120m,
则该校受影响的时间为:120÷5=24(s).
答:该校受影响拖拉机产生的噪声的影响时间为24秒.
15.解:展开后由题意得:∠C=90°,AC=3×25+3×15=120,BC=90,
由勾股定理得:AB===150cm,
答:最短路程是150cm.
16.解:如图所示,
根据勾股定理得,AB==25cm.
答:需要爬行的最短距离是25cm.
17.解:由题意得,AB=A1B,∠BCA=90°,
设BC=xm,则AB=A1B=(4﹣x)m,
在Rt△A1BC中,A1C2+BC2=A1B2,
即:22+x2=(4﹣x)2,
解得:x=,
答:弯折点B与地面的距离为米.
18.解:(1)CH是从旅游地C到河的最近的路线,
理由是:在△CHB中,
∵CH2+BH2=42+32=25,
BC2=25,
∴CH2+BH2=BC2
∴△HBC是直角三角形且∠CHB=90°,
∴CH⊥AB,
所以CH是从旅游地C到河的最近的路线;
(2)设AC=AB=x千米,则AH=(x﹣3)千米,
在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,
由勾股定理得:AC2=AH2+CH2
∴x2=(x﹣3)2+42
解这个方程,得x=,
答:原来的路线AC的长为千米.
初中数学北师大版八年级上册3 勾股定理的应用当堂检测题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学第一章 勾股定理3 勾股定理的应用精品练习题: 这是一份初中数学第一章 勾股定理3 勾股定理的应用精品练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北师大版八年级上册3 勾股定理的应用精练: 这是一份北师大版八年级上册3 勾股定理的应用精练,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。