北师大版八年级上册3 勾股定理的应用精练
展开1.3勾股定理的应用同步练习-2023-2024学年北师大版数学八年级上册
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,圆柱形玻璃杯高为,底面周长为,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿且与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为( ).(杯壁厚度不计)
A.20 B.25 C.30 D.40
2.如图,一个底面圆周长为24cm,高为9cm的圆柱体,一只蚂蚁从距离上边缘4cm的点A沿侧面爬行到相对的底面上的点B所经过的最短路线长为( )
A. B.15cm C.14cm D.13cm
3.固定在地面上的一个正方体木块(如图①),其棱长为,沿其相邻三个面的对角线(图中虚线)去掉一角,得到如图②所示的几何体木块,一只蚂蚁沿着该木块的表面从点A爬行到点B的最短路程为( )
A. B. C. D.
4.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为( )
A.20cm B.50cm C.40cm D.45cm
5.已知圆柱形茶杯的高为12厘米,底面直径为5厘米,将长为20厘米的筷子沿底面放入杯中,筷子露在杯子口外的长度是x厘米,则x的取值范围是( )厘米.
A.无法确定 B. C. D.
6.勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度,将它往前推至处时(即水平距离),踏板离地的垂直高度,它的绳索始终拉直,则绳索的长是( )
A. B. C.6 D.
7.如图,垂直地面的旗杆在离地3m处断裂,旗杆顶部落地点离旗杆底部4m,则旗杆折断前的高度为( )
A.6 B.7 C.8 D.9
8.如图,在长方体盒子中,已知,长为的细直木棒恰好从小孔G处插入,木棒的一端I与底面接触,当木棒的端点I在长方形内及边界运动时,长度的最小值为( )
A. B. C. D.
9.一个门框的尺寸如图所示,下列矩形木板不能从门框内通过的是( )
A.长3m,宽2.2m的矩形木板 B.长4m,宽2.1m的矩形木板
C.长3m,宽2.5m的矩形木板 D.长3m,面积为的矩形木板
10.如图,港口在观测站的正西方向,,某船从港口出发,沿北偏西方向航行一段距离后到达处,此时从观测站处测得该船位于北偏西的方向,则该船航行的距离(即的长)为( )
A. B. C. D.
二、填空题
11.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”译文:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸)设长方形门的宽尺,可列方程为 .
12.某工程队负责挖掘一处通山隧道,为了保证山脚A,B两处出口能够直通,工程队在工程图上留下了一些测量数据(此为山体俯视图,图中测量线拐点处均为直角,数据单位:米).据此可以求得该隧道预计全长 米.
13.有—个长为12cm,宽为,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔长度不应超过 .
14.如图,甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B.若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向是 .
15.如图,在矩形ABCD中,AB=5,AD=3,动点P满足3S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为 .
16.如图,一架长为4m的梯子,一端放在离墙脚2.4m处,另一端靠墙,则梯子顶端离墙脚 m.
17.一只蚂蚁从圆柱体的下底面A点沿着侧面爬到上底面B点,已知圆柱的底面周长为12cm,高为8cm,则蚂蚁所走过的最短路径是 cm.
18.如图,在东西走向的铁路上有A、B两站(视为直线上的两点)相距36千米,在A、B的正北分别有C、D两个蔬菜基地,其中C到A站的距离为24千米,D到B站的距离为12千米,现要在铁路AB上建一个蔬菜加工厂E,使蔬菜基地C、D到E的距离相等,则E站应建在距A站 千米的地方.
19.如下图是一只圆柱形玻璃杯,杯高为,将一根筷子插入其中,留在杯外最长,最短,则这只玻璃杯的内径是 .
20.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,在中,,,,求的长.如果设,则可列方程为 .
三、解答题
21.小明是一名升旗手,面对高高的旗杆,他想出了好几种方法测量方法,学过直角三角形后,他只用一把卷尺就测出了旗杆的高度.下面是他测量的过程和数据:
第一步:测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1m(如图1),
第二步:拉着绳子的下端往后退,当他将绳子拉直时,测得此时拉绳子的手到地面的距离为1m,到旗杆的距离为8m,(如图2).他很快算出了旗杆的高度,请你也来试一试.
22.如图,有一空心圆柱,高为,底面周长为,在圆柱内的下底面A处有一只蝴蝶,它想和上底面B处的同伴汇合,则这只蝴蝶经过的最短距离是多少?(取3)
23.“三农”问题是关系国计民生的根本问题,实施乡村振兴战略是建设美丽中国的关键举措.如图,公路上两点相距50km,为两村庄,于,于,已知,,现在要在公路上建一个土特产品市场,使得两村庄到市场的距离相等,则市场应建在距多少千米处?并判断此时的形状,请说明理由.
24.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于点B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.
25.如图,将长为25米长的云梯斜靠在建筑物的侧墙上,长7米.
(1)求梯子上端到墙的底端E的距离的长;
(2)如果梯子的顶端A沿墙下滑4米,则梯脚B将外移多少米?
参考答案:
1.B
2.D
3.A
4.C
5.D
6.B
7.C
8.A
9.C
10.B
11.
12.1000
13.13
14.北偏西60°
15.
16.3.2
17.
18.12
19.7
20.
21.16
22.
23.市场应建在距的20千米处;是等腰直角三角形.
24.13.3km
25.(1)的长米;
(2)梯脚B将外移8米.
初中数学北师大版八年级上册3 勾股定理的应用当堂检测题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用当堂检测题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版八年级上册3 勾股定理的应用当堂达标检测题: 这是一份北师大版八年级上册3 勾股定理的应用当堂达标检测题,共8页。试卷主要包含了单选题,填空题,应用题等内容,欢迎下载使用。
初中数学北师大版八年级上册3 勾股定理的应用同步测试题: 这是一份初中数学北师大版八年级上册3 勾股定理的应用同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。