北师大版八年级上册3 勾股定理的应用优秀课后作业题
展开1.3 勾股定理的应用
一.选择题
1.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店( )
A.880米B.1100米C.1540米D.1760米
2.如图,在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半径的圆形成一圆环.该圆环的面积为( )
A.π B.3πC.9πD.6π
3.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A.0.7米B.0.8米C.0.9米D.1.0米
4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是( )
A.直角三角形两个锐角互补
B.三角形内角和等于180°
C.如果三角形两条边长的平方和等于第三边长的平方
D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形
5.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
A.锐角弯B.钝角弯C.直角弯D.不能确定
6.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.5≤a≤12B.5≤a≤13C.12≤a≤13D.12≤a≤15
7.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.
A.13,12,12B.12,12,8C.13,10,12D.5,8,4
8.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )
A.3mB.5mC.7mD.9m
9.如图,带阴影的长方形面积是( )
A.9 cm2B.24 cm2C.45 cm2D.51 cm2
10.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
A.5B.25C.10+5D.35
11.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D为底边BC的中点)的长是( )
A.6米B.5米C.3米D.2.5米
12.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )
A.0.7米B.1.5米C.2.2米D.2.4米
二.填空题
13.如图,有一个圆柱,它的高等于16cm,底面半径等干4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是______cm.(π取3)
如图:知:AM⊥MN,BN⊥MN,垂足分别为M,N,点C是MN上使AC+BC的值最小的点.若AM=3,BN=5,MN=15,则AC+BC=______.
如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm、和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是______cm.
16.如图,有一个圆柱形杯子,底面周长为12cm,高为8cm,A点在内壁距杯口2cm处,在A点正对面的外壁距杯底2cm的B处有一只小虫,小虫要到A处饱餐一顿至少要走______cm.(杯子厚度忽略不计)
17.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为 米.
18.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动 .
19.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为 cm(杯壁厚度不计).
20.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是 .
解答题
21.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?
22.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
23.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?
24.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?
25.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
26.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.
答案提示
1.B.2.C;3.A;4.D.5.C;6.C;7.C;8.A;9.C;10.B;11.D.
12.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,
∴AB2=0.72+2.42=6.25.
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,
∴BD2+22=6.25,
∴BD2=2.25,
∵BD>0,
∴BD=1.5米,
∴CD=BC+BD=0.7+1.5=2.2米.
故选:C.
13.20;14.17;15.5;16.10;17.12m.18.8m.
19.
【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
解:如图:
将杯子侧面展开,作A关于EF的对称点A′,
连接A′B,则A′B即为最短距离,A′B===20(cm).
故答案为20.
20.
【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
解:如图①:AM2=AB2+BM2=16+(5+2)2=65;
如图②:AM2=AC2+CM2=92+4=85;
如图③:AM2=52+(4+2)2=61.
∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
故答案为:61.
21.分析:首先我们需要根据题意将实际问题转化成数学模型.
解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.
22.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.
解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最长是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:这根铁棒的长应在2~3米之间(包含2米、3米).
23.解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.∴AC2+AB2=BC2.
∴AC2=BC2﹣AB2=302﹣242=324
∴AC=18.
∴乙船的航速是:18÷2=9海里/时.
24.解:(1)∵∠C=90°,AB=2.5,BC=0.7,
∴AC===2.4(米),
答:此时梯顶A距地面的高度AC是2.4米;
(2)∵梯子的顶端A下滑了0.9米至点A′,
∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),
在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,
即1.52+B′C2=2.52,
∴B′C=2(m),
∴BB′=CB′﹣BC=2﹣0.7=1.3(m),
答:梯子的底端B在水平方向滑动了1.3m.
25.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
则水池的深度为12尺,芦苇长13尺.
26.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.
【解答】解:根据折叠可得BE=EB′,AB′=AB=3,
设BE=EB′=x,则EC=4﹣x,
∵∠B=90°,AB=3,BC=4,
∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,
在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,
解得x=1.5.
初中数学北师大版八年级上册3 勾股定理的应用优秀达标测试: 这是一份初中数学北师大版八年级上册3 勾股定理的应用优秀达标测试,文件包含同步讲义北师大版数学八年级上册专题13勾股定理的应用学生版docx、同步讲义北师大版数学八年级上册专题13勾股定理的应用教师版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
初中数学第一章 勾股定理3 勾股定理的应用精品练习题: 这是一份初中数学第一章 勾股定理3 勾股定理的应用精品练习题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中北师大版3 勾股定理的应用同步练习题: 这是一份初中北师大版3 勾股定理的应用同步练习题,共17页。试卷主要包含了如图,已知树EF等内容,欢迎下载使用。