初中数学人教版九年级下册第二十七章 相似综合与测试课文内容ppt课件
展开一、“A”字型【例1】如图,△ABC是边长为3的等边三角形,点E,F分别在AC,BC边上,连接AF,BE相交于点P,∠APE=60°.
(1)求证:△APE∽△ACF;(2)若AE=1,求AP·AF的值.分析:(1)由△ABC是等边三角形得到∠C=60°,从而可由两角相等判定三角形相似;
[对应训练]1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.
二、“X”字型【例2】如图,在▱ABCD中,E是AD上的一点,已知AE∶ED=2∶1,AO=4,求OC的长.分析:先利用平行四边形的性质得到AD=BC,AD∥BC,证明△AOE∽△COB,再由AE∶ED=2∶1得到AE∶BC=2∶3,利用相似比可计算出OC的长.
[对应训练]2.如图,在正方形ABCD中,点E,F分别是边CB,DC延长线上的点,且BE=CF,连接AE,FB,FB的延长线交AE于点M.求证:(1)△BEM∽△BFC;(2)CF2=FB·ME.
三、旋转型【例3】如图,==,B,D,F,E在同一条直线上,请找出图中的相似三角形,并说明理由.分析:根据三边成比例的两个三角形相似,即可证得△ABC∽△ADE,可得∠BAD=∠CAE,又由两边成比例且夹角相等的两个三角形相似,即可证得△BAD∽△CAE,可得∠ABD=∠ACE.由∠ACB=∠AED,∠AFE=∠BFC,可证得△AFE∽△BFC.由∠AFB=∠EFC,∠ABF=∠ECF,可证得△ABF∽△ECF.
[对应训练]3.如图,在△ABC和△AED中,AB·AD=AC·AE,∠CAE=∠BAD,S△ADE=4S△ABC.求证:DE=2BC.
[对应训练]4.如图,在矩形ABCD中,AB=6,AD=12,点E在边AD上,且AE=8,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.
人教版九年级下册第二十七章 相似综合与测试教学演示课件ppt: 这是一份人教版九年级下册第二十七章 相似综合与测试教学演示课件ppt,共24页。
初中数学人教版九年级下册第二十七章 相似综合与测试背景图课件ppt: 这是一份初中数学人教版九年级下册第二十七章 相似综合与测试背景图课件ppt,共21页。
数学九年级下册第二十七章 相似综合与测试复习ppt课件: 这是一份数学九年级下册第二十七章 相似综合与测试复习ppt课件,共22页。PPT课件主要包含了①③④等内容,欢迎下载使用。