所属成套资源:湘教版数学初二下学期PPT课件整套
湘教版(2024)八年级下册1.2 直角三角形的性质与判定(Ⅱ)公开课ppt课件
展开
这是一份湘教版(2024)八年级下册1.2 直角三角形的性质与判定(Ⅱ)公开课ppt课件,共29页。PPT课件主要包含了学习目标,复习引入,c65,c85,新课导入,★勾股定理的逆定理,知识讲解,都是直角三角形,a2+b2c2,证一证等内容,欢迎下载使用。
掌握勾股定理的逆定理及勾股数.(重点)
能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)
能够运用勾股定理的逆定理解决问题.(难点)
问题1:勾股定理的内容是什么?
如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.
问题2:求以线段a、b为直角边的直角三角形的斜边c的长:
① a=3,b=4;② a=2.5,b=6;③ a=4,b=7.5.
思考 :以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?
据说古埃及人用图1的方法画直角:把一根长绳打上13个等距离的结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
思考:如果一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.你认为这个结论正确吗?
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
下面有三组数分别是一个三角形的三边长a, b, c. ①5,12,13; ②7,24,25; ③8,15,17.问题:这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,② 7,24,25满足72+242=252,③ 8,15,17满足82+152=172.
猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2. 求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,
∴△ABC≌ △A′B′C′(SSS),
∴∠C= ∠C′=90° , 即△ABC是直角三角形.
如果三角形的三边长a ,b ,c满足 a2+b2=c2那么这个三角形是直角三角形.
勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对应的角为直角.
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定理的逆定理,∴这个三角形不是直角三角形.
运用勾股定理的逆定理判断直角三角形的一般步骤:(1)找:确定三角形的最长边; (2)算:分别计算出最长边的平方与另两边的平方和; (3)比:通过比较来判断最长边的平方与另两边的平方和是否相等; (4)判:作出结论,若相等,则说明这个三角形是直角三角形,否则不是直角三角形.
例2 判断满足下列条件的三角形是否为直角三角形. (1)在△ABC 中,∠A = 20°,∠B = 70°; (2)在△ABC 中,AC=7,AB=24,BC=25 ; (3)一个三角形的三边长a,b,c 满足(a+b)(a-b)= c2.
判定三角形为直角三角形的方法(1)用角判断: ①两个锐角互余的三角形是直角三角形; ②有一个角是90°的三角形是直角三角形; (2)用边判断:如果已知条件与边有关,则可通过勾股定理的逆定理进行判断.
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.
3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
例3 下列几组数为勾股数的是( ) A.4,5,6 B.12,16,20 C.-10,24,26 D.2.4,4.5,5.1
★ 勾股定理的逆定理的应用
例4 如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
分析:已知是什么?要解决的问题是什么?
“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如图.
由于我们现在所能得到的都是线段长,要求角,由此你联想到了什么?
实质是要求出两艘船航向所成角.
PQ=16×1.5=24(海里),
PR=12×1.5=18(海里),
∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.
由“远航”号沿东北方向航行可知∠1=45°.∴∠2=45°,即“海天”号沿西北方向航行.
总结:解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.
例5 一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?
在△BCD中, ∴△BCD 是直角三角形,∠DBC是直角.因此,这个零件符合要求.
解:在△ABD中, ∴△ABD 是直角三角形,∠A是直角.
★ 勾股定理及其逆定理的综合应用
例6 如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
在Rt△ABC中,在△ACD中,AC2+CD2=52+122=169=AD2,∴△ACD是直角三角形,且∠ACD=90°.∴S四边形ABCD=SRt△ABC+SRt△ACD=6+30=36.
例7 如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.
1.下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132
3.已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于1的正整数).试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.
解:∵AB²+BC²=(n²-1)²+(2n)² =n4 -2n²+1+4n² =n4 +2n²+1 =(n²+1)² =AC²,∴△ABC直角三角形,边AC所对的角是直角.
4.如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30 cm2,DC=12 cm,AB=3cm,BC=4cm,求△ABC的面积.
解: ∵ S△ACD=30 cm2,DC=12 cm.∴ AC=5 cm.又∵∴△ABC是直角三角形, ∠B是直角.∴
5.如图,在一次夏令营中,小明从营地A出发,沿北偏东53°方向走了400m到达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距离.
解:如图,过点B作BE∥AD.∴∠DAB=∠ABE=53°.∵37°+∠CBA+∠ABE=180°,∴∠CBA=90°,∴AC2=BC2+AB2=3002+4002=5002,∴AC=500m,即A、C两点间的距离为500m.
解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,即AB+BC+AC=36cm,∴3x+4x+5x=36,解得x=3.∴AB=9cm,BC=12cm,AC=15cm.∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9-3×2=3(cm),BQ=12-1×3=9(cm),在Rt△PBQ中,由勾股定理得
6.如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长.
如果三角形的三边长a ,b ,c满足 a2+b2=c2,那么这个三角形是直角三角形.
最长边不一定是c, ∠C也不一定是直角
作用:从三边数量关系判定一个三角形是否是直角形三角形
满足a2+b2=c2的三个正整数,称为勾股数.
与勾股定理结合解决不规则图形等问题
相关课件
这是一份初中数学湘教版(2024)七年级上册(2024)1.2 数轴、相反数与绝对值完美版ppt课件,共14页。PPT课件主要包含了教学目标,新课导入,新知探究,绝对值的概念,非负数,本课小结,绝对值的性质,课堂小测等内容,欢迎下载使用。
这是一份初中数学沪科版八年级下册18.2 勾股定理的逆定理图片ppt课件,共16页。PPT课件主要包含了问题引入,新知归纳,例题讲解,疑问升级等内容,欢迎下载使用。
这是一份湘教版1.2.3绝对值评优课ppt课件,文件包含湘教版七上数学123绝对值课件pptx、湘教版七上数学123绝对值教案doc等2份课件配套教学资源,其中PPT共19页, 欢迎下载使用。