所属成套资源:苏科版八年级数学上册尖子生同步培优题典专题特训(原卷版+解析)
- 苏科版八年级数学上册尖子生同步培优题典专题5.10第5章平面直角坐标系单元测试(培优压轴卷)特训(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学上册尖子生同步培优题典专题6.1函数专项提升训练(重难点培优)特训(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学上册尖子生同步培优题典专题6.7一次函数与几何综合大题专项提升训练(重难点培优)特训(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学上册尖子生同步培优题典专题6.8第6章一次函数单元测试(基础过关卷)特训(原卷版+解析) 试卷 1 次下载
- 苏科版八年级数学上册尖子生同步培优题典专题6.9第6章一次函数单元测试(培优压轴卷)特训(原卷版+解析) 试卷 0 次下载
苏科版八年级数学上册尖子生同步培优题典专题6.2一次函数的图象与性质专项提升训练(重难点培优)特训(原卷版+解析)
展开
这是一份苏科版八年级数学上册尖子生同步培优题典专题6.2一次函数的图象与性质专项提升训练(重难点培优)特训(原卷版+解析),共18页。
【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题6.2一次函数的图象与性质专项提升训练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共22题,选择8道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•海门市期末)一次函数y=2x+1的图象经过的象限是( )A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四2.(2022•赣榆区二模)一次函数y=kx﹣1(k≠0),若y随x的增大而减小,则它的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2022•武进区二模)下列关于直线y=3x﹣3的性质说法不正确的是( )A.不经过第二象限 B.与y轴交于点(0,﹣3) C.与x轴交于点(﹣1,0) D.y随x的增大而增大4.(2022•宿豫区二模)已知一次函数y=kx+b(k<0)的图象经过点(x1,5)、(x2,﹣2),则下列结论正确的是( )A.x1<x2 B.x1>x2 C.x1≤x2 D.x1≥x25.(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是( )A.﹣10≤p≤﹣2 B.p≥﹣10 C.﹣6≤p≤﹣2 D.﹣6≤p<﹣26.(2022秋•鼓楼区校级月考)“龟兔赛跑”中兔子跑得快,一开始领先,但它太骄傲在途中睡了一觉再继续跑;乌龟跑得慢,但一直不停地跑,抵达终点,赢得胜利.下面哪幅图基本反映了比赛的过程?( )A. B. C. D.7.(2022•广陵区一模)如图,物理课上,老师将挂在弹簧测力计下端的铁块完全浸没在水中,然后缓慢匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )A. B. C. D.8.(2022春•宜兴市校级月考)在平面直角坐标系xOy中,对于任意一点P(x,y),规定:f(x,y)=;比如f(﹣4,)=4,f(﹣2,﹣3)=3.当f(x,y)=2时,所有满足该条件的点P组成的图形为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上9.(2022•淮阴区模拟)已知函数y=﹣2x+3的图象上有两点A(﹣3,y1)、B(﹣2,y2),则y1 y2.(填“>”“<”或“=”号)10.(2022春•如皋市期中)已知M(1,a)和N(2,b)是一次函数y=﹣x+1图象上的两点,则a,b的大小关系为a b(填“>”、“<”或“=”).11.(2021秋•鼓楼区校级期末)已知下列函数:①y=x+1;②y=x﹣2;③y=﹣x+1;④y=﹣x﹣2.其中,y随x的增大而增大的有 (填写所有正确选项的序号).12.(2021秋•姜堰区期末)已知A(x1,y1)、B(x2,y2)两点在一次函数y=(m﹣1)x+7的图象上,且当x1<x2时,y1<y2,则m的取值范围是 .13.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 .14.(2022•海陵区二模)在平面直角坐标系中,将直线y=﹣2x沿x轴向右平移,平移后的直线经过点(﹣1,6),则直线向右平移 个单位长度.15.(2022•广陵区一模)在平面直角坐标系xOy中,若函数图象上任意两点P(x1,y1),Q(x2,y2)均满足(x1﹣x2)(y1﹣y2)>0.下列四个函数图象中,所有正确的函数图象的序号是 .16.(2019秋•东台市期末)如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为 .三、解答题(本大题共6小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•射阳县校级期末)已知y+2与x+1成正比,且x=2时y=7.(1)求y与x之间的函数关系式;(2)当y=4时,求x的值.18.(2021秋•大丰区期末)已知y﹣2与x成正比,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象;(3)当y>0时,直接写出x的取值范围为 .19.(2022春•如皋市校级月考)如图,在直角坐标系中,O为原点,B点的坐标为(﹣1,3)(1)求直线OB的解析式;(2)若点A(2,0),则在直线OB上有一点C,使得S△OAC=4,试求出点C的坐标.20.(2019春•崇川区校级月考)已知一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当﹣1≤x≤2时,求y的取值范围.21.(2019春•崇川区校级月考)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用是多少?离山脚多少米?22.(2021秋•泗洪县期末)【直观想象】如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;【数学发现】当一个动点P(x,0)到一个定点的距离为d,我们发现d是x的函数;【数学理解】(1)动点P(x,0)到定点A(2,0)的距离为d,当x= 时,d取最小值;【类比迁移】(2)设动点P(x,0)到两个定点M(1,0)、N(3,0)的距离和为y.①随着x增大,y怎样变化?②在给出的平面直角坐标系中画出y关于x的函数图象;③当y>6时,x的取值范围是 .【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题6.2一次函数的图象与性质专项提升训练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共22题,选择8道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022春•海门市期末)一次函数y=2x+1的图象经过的象限是( )A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四【分析】根据一次函数的系数即可确定图象.【解答】解:在一次函数y=2x+1中,k=2>0,b=1>0,∴一次函数图象经过第一、二、三象限,故选:A.2.(2022•赣榆区二模)一次函数y=kx﹣1(k≠0),若y随x的增大而减小,则它的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,可以得到k<0,b<0,从而可以得到函数y=kx﹣1(k≠0)的图象经过哪几个象限,不经过哪个象限.【解答】解:∵一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,∴k<0,又∵b=﹣1<0,∴一次函数y=﹣kx﹣2021(k≠0)的图象经过第二、三、四象限,不经过第一象限,故选:A.3.(2022•武进区二模)下列关于直线y=3x﹣3的性质说法不正确的是( )A.不经过第二象限 B.与y轴交于点(0,﹣3) C.与x轴交于点(﹣1,0) D.y随x的增大而增大【分析】利用一次函数图象的性质解答即可.【解答】解:A、k=3>0,b=﹣3<0,经过第一、四、三象限,不经过第二象限,说法正确;B、与y轴交于点(0,﹣3),说法正确;C、与x轴交于点(1,0),不是(﹣1,0),说法错误;D、y随x的增大而增大,说法正确;故选:C.4.(2022•宿豫区二模)已知一次函数y=kx+b(k<0)的图象经过点(x1,5)、(x2,﹣2),则下列结论正确的是( )A.x1<x2 B.x1>x2 C.x1≤x2 D.x1≥x2【分析】由k<0,利用一次函数的性质可得出y随x的增大而减小,结合5>﹣2,即可得出x1<x2.【解答】解:∵k<0,∴y随x的增大而减小,又∵一次函数y=kx+b(k<0)的图象经过点(x1,5)、(x2,﹣2),且5>﹣2,∴x1<x2.故选:A.5.(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是( )A.﹣10≤p≤﹣2 B.p≥﹣10 C.﹣6≤p≤﹣2 D.﹣6≤p<﹣2【分析】根据过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,可以得到m和n的关系,m、n的正负情况,再根据p=3m﹣n,即可用含m的式子表示p和用含n的式子表示p,然后即可得到相应的不等式组,再解不等式组即可.【解答】解:∵过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,∴﹣m+n=2,m<0,n≥0,∴n=2+m,m=n﹣2,∵p=3m﹣n,∴p=3m﹣(2+m)=3m﹣2﹣m=2m﹣2,p=3m﹣n=3(n﹣2)﹣n=3n﹣6﹣n=2n﹣6,∴m=,n=,∴,解得﹣6≤p<﹣2,故选:D.6.(2022秋•鼓楼区校级月考)“龟兔赛跑”中兔子跑得快,一开始领先,但它太骄傲在途中睡了一觉再继续跑;乌龟跑得慢,但一直不停地跑,抵达终点,赢得胜利.下面哪幅图基本反映了比赛的过程?( )A. B. C. D.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,而且乌龟是在兔子睡醒后才到达终点的,所以A、D选项错误;因为开始时兔子跑得快,线段比兔子的陡,故C选项不合题意,B选项符合题意;故选:B.7.(2022•广陵区一模)如图,物理课上,老师将挂在弹簧测力计下端的铁块完全浸没在水中,然后缓慢匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )A. B. C. D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.8.(2022春•宜兴市校级月考)在平面直角坐标系xOy中,对于任意一点P(x,y),规定:f(x,y)=;比如f(﹣4,)=4,f(﹣2,﹣3)=3.当f(x,y)=2时,所有满足该条件的点P组成的图形为( )A. B. C. D.【分析】根据f(x,y)的定义和f(x,y)=2可知|x|=2,|y|≤2或|y|=2,|x|<2,然后分两种情况分别进行讨论即可得到点P组成的图形.【解答】解:∵f(x,y)=2,∴|x|=2,|y|≤2或|y|=2,|x|<2.①当|x|=2,|y|≤2时,点P满足x=2,﹣2≤y≤2或x=﹣2,﹣2≤y≤2,在图象上,线段x=2,﹣2≤y≤2即为D选项中正方形的右边,线段x=﹣2,﹣2≤y≤2即为D选项中正方形的左边;②当|y|=2,|x|<2时,点P满足y=2,﹣2<x<2,或y=﹣2,﹣2<x<2,在图象上,线段y=2,﹣2<x<2即为D选项中正方形的上边,线段y=﹣2,﹣2<x<2即为D选项中正方形的下边.故选:D.二.填空题(共8小题)9.(2022•淮阴区模拟)已知函数y=﹣2x+3的图象上有两点A(﹣3,y1)、B(﹣2,y2),则y1 > y2.(填“>”“<”或“=”号)【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<﹣2,即可得出y1>y2.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,y1)、B(﹣2,y2)均在函数y=﹣2x+3的图象上,且﹣3<﹣2,∴y1>y2.故答案为:>.10.(2022春•如皋市期中)已知M(1,a)和N(2,b)是一次函数y=﹣x+1图象上的两点,则a,b的大小关系为a > b(填“>”、“<”或“=”).【分析】由k=﹣1<0,利用一次函数的性质可得出y随m的增大而减小,结合1<2,可得出a>b.【解答】解:∵k=﹣1<0,∴y随m的增大而减小,又∵M(1,a)和N(2,b)是一次函数y=﹣x+1图象上的两点,且1<2,∴a>b.故答案为:>.11.(2021秋•鼓楼区校级期末)已知下列函数:①y=x+1;②y=x﹣2;③y=﹣x+1;④y=﹣x﹣2.其中,y随x的增大而增大的有 ①② (填写所有正确选项的序号).【分析】根据一次函数的性质判断即可.【解答】解:①y=x+1,k=1>0,y随x的增大而增大,故①符合题意;②y=x﹣2,k=>0,y随x的增大而增大,故②符合题意;③y=﹣x+1,k=﹣1<0,y随x的增大而减小,故③不符合题意;④y=﹣x﹣2,k=﹣<0,y随x的增大而减小,故④不符合题意;故答案为:①②.12.(2021秋•姜堰区期末)已知A(x1,y1)、B(x2,y2)两点在一次函数y=(m﹣1)x+7的图象上,且当x1<x2时,y1<y2,则m的取值范围是 m>1 .【分析】根据题意可得出y随x的增大而增大,结合一次函数的性质可得出m﹣1>0,解之即可得出m的取值范围.【解答】解:∵A(x1,y1)、B(x2,y2)两点在一次函数y=(m﹣1)x+7的图象上,且当x1<x2时,y1<y2,∴y随x的增大而增大,∴m﹣1>0,∴m>1,即m的取值范围为m>1.故答案为:m>1.13.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 y=﹣x+2(答案不唯一) .【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图象经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).14.(2022•海陵区二模)在平面直角坐标系中,将直线y=﹣2x沿x轴向右平移,平移后的直线经过点(﹣1,6),则直线向右平移 2 个单位长度.【分析】先根据平移规律求出平移后的直线解析式为y=﹣2(x﹣m),再把点(﹣1,6)代入,即可求出m的值.【解答】解:将直线y=﹣2x沿x轴向右平移m个单位,得到直线y=﹣2(x﹣m),把点(﹣1,6)代入,得6=﹣2(﹣1﹣m),解得m=2.故答案为:2.15.(2022•广陵区一模)在平面直角坐标系xOy中,若函数图象上任意两点P(x1,y1),Q(x2,y2)均满足(x1﹣x2)(y1﹣y2)>0.下列四个函数图象中,所有正确的函数图象的序号是 ②④ .【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:∵(x1﹣x2)(y1﹣y2)>0,∴(x1﹣x2)与(y1﹣y2)同号,当x1﹣x2>0时,y1﹣y2>0;当x1﹣x2<0时,y1﹣y2<0.∴y随x的增大而增大,故正确的函数图象的序号是②④.故答案为:②④.16.(2019秋•东台市期末)如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为 ①③ .【分析】设实线表示甲的函数图象,求得在第15到33分时甲的速度,让15分加上甲行1千米用的时间即为第一次相遇的时间;易得乙的速度,乘以48即为全程;设t分时,第2次相遇,易得BC段甲的速度,相遇时甲走的路程等于乙走的路程,把相关数值代入求解后可得正误.【解答】解:①15到33分钟的速度为km/min,∴再行1千米用的时间为9分钟,∴第一次相遇的时间为15+9=24min,正确;②第一次相遇时的路程为6km,时间为24min,所以乙的速度为6÷24=0.25km/min,所以全长为48×0.25=12km,故错误;③甲第三段速度为5÷10=0.5km/min,7+0.5×(t﹣33)=0.25t,解得t=38,正确,故答案为:①③.三.解答题(共6小题)17.(2021秋•射阳县校级期末)已知y+2与x+1成正比,且x=2时y=7.(1)求y与x之间的函数关系式;(2)当y=4时,求x的值.【分析】(1)根据题意可设y+2=k(x+1),然后把x=2,y=7代入进行计算求出k的值即可解答;(2)把y=4代入(1)所求的函数表达式,进行计算即可解答.【解答】解:(1)设y+2=k(x+1),把x=2,y=7代入y+2=k(x+1)中可得:7+2=k(2+1),解得:k=3,∴y+2=3(x+1),∴y=3x+1,∴y与x之间的函数关系式为:y=3x+1;(2)当y=4时,3x+1=4,解得:x=1,∴x的值为1.18.(2021秋•大丰区期末)已知y﹣2与x成正比,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象;(3)当y>0时,直接写出x的取值范围为 x<2 .【分析】(1)利用正比例的函数的定义,设y﹣2=kx,然后把已知的对应值代入求出k,从而得到y与x的函数表达式;(2)利用一次函数解析式确定一次函数x轴和y轴的交点坐标,然后描点画一次函数图象;(3)利用函数图象,找出直线在x轴上所对应的自变量的范围即可.【解答】解:(1)设y﹣2=kx,把x=﹣2,y=4代入得4﹣2=﹣2k,解得k=﹣1,∴y﹣2=﹣x,∴y与x的函数表达式为y=﹣x+2;(2)当x=0时,y=2,则一次函数y轴的交点坐标为(0,2);当y=0时,﹣x+2=0,解得x=2,则一次函数x轴的交点坐标为(2,0);如图,(3)当y>0时,x<2.故答案为:x<2.19.(2022春•如皋市校级月考)如图,在直角坐标系中,O为原点,B点的坐标为(﹣1,3)(1)求直线OB的解析式;(2)若点A(2,0),则在直线OB上有一点C,使得S△OAC=4,试求出点C的坐标.【分析】(1)设直线OB的解析式为y=kx,把B点坐标代入即可;(2)设点C的纵坐标为y,根据S△OAC=4列出关于y的方程,求出y,代入直线OB的解析式,求出点C的横坐标即可.【解答】解:(1)设直线OB的解析式为y=kx,把B(﹣1,3)代入,得3=﹣k,解得k=﹣3,即直线OB的解析式为y=﹣3x;(2)设点C的纵坐标为y,∵S△OAC=4,A(2,0),∴×2×|y|=4,∴y=±4,当y=4时,﹣3x=4,解得x=﹣;当y=﹣4时,﹣3x=﹣4,解得x=;综上所述,点C的坐标为(﹣,4)或(,﹣4).20.(2019春•崇川区校级月考)已知一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当﹣1≤x≤2时,求y的取值范围.【分析】(1)先根据一次函数y=(3m﹣8)x+1﹣m的图象与y轴的负半轴相交,y随x的增大而减小关于m的不等式组,求出m的取值范围即可;(2)根据﹣1≤x≤2列出关于y的不等式,通过解不等式求得y的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,∴,解得3<m<4.5,∵m为整数,∴m=4.(2)由(1)知,m=4,则该一次函数解析式为:y=﹣x﹣1.∵﹣1≤x≤2,∴﹣3≤﹣x﹣1≤0,即y的取值范围是﹣3≤y≤0.21.(2019春•崇川区校级月考)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用是多少?离山脚多少米?【分析】(1)由图可知,爷爷比小强先上了100米,由点(10,300)求出小强的速度30米/分,即可求山高;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.【解答】解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.22.(2021秋•泗洪县期末)【直观想象】如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;【数学发现】当一个动点P(x,0)到一个定点的距离为d,我们发现d是x的函数;【数学理解】(1)动点P(x,0)到定点A(2,0)的距离为d,当x= 2 时,d取最小值;【类比迁移】(2)设动点P(x,0)到两个定点M(1,0)、N(3,0)的距离和为y.①随着x增大,y怎样变化?②在给出的平面直角坐标系中画出y关于x的函数图象;③当y>6时,x的取值范围是 x<﹣1或x>5 .【分析】(1)当A,P重合时,d=0最小,此时x=2.(2)①利用图象法可得结论.②分x<﹣1,﹣1≤≤3,x>3三种情形,分别画出函数图象即可.③利用图象法解决问题即可.【解答】解:(1)当A,P重合时,d=0最小,此时x=2.故答案为:2.(2)①y先变小然后不变再变大.②如图所示:③观察图象可知,满足条件的x的取值范围为:x<﹣1或x>5.故答案为:x<﹣1或x>5.