高中数学人教A版 (2019)必修 第一册3.3 幂函数集体备课课件ppt
展开(1)如果张红以1元/kg的价格购买了某种蔬菜wkg, 那么她需要支付p=w元, 这里p是w的函数;(2)如果正方形的边长为a, 那么正方形的面积S=a2 , 这里S是a的函数;(3)如果立方体的边长为b, 那么立方体的体积V=b3 , 这里V是b的函数;(4)如果一个正方形场地的面积为S, 那么正方形的边长c= , 这里c是S的函数;(5)如果某人ts内骑车行进1 km, 那么他骑车的平均速度v= ,这里v是t的函数 .
问题1 观察(1) ~(5) 中的函数解析式, 你能发现它们的共同特征吗?
y=x0 ,y=x4 ,y=x-2 ,y= 等 .
问题导入追问1 你还能举几个相同结构的函数的例子吗?
共同特征是: 函数解析式是幂的形式, 且指数是常数,底数是自变量 .
幂函数定义:一般地, 函数y=xα叫做幂函数(pwer functin) , 其中x为自变量,α为常数 .对于幂函数, 我们只研究α= 1, 2, 3, , -1时的图象与性质 .
(1) 函数的对应关系的表示、定义域、值域、单调性和奇偶性等 .(2)通常先根据函数解析式求出函数的定义域, 画出函数的图象; 再利用图象和解析式, 讨论函数的值域、单调性、奇偶性等问题 .
(2)你能类比前面讨论函数性质时的思路, 提出研究幂函数性质的方法吗?
问题2 (1)对于一类新函数,请你思考我们需要从哪些方面入手去研究?
问题3 请你在同一坐标系中画出函数y=x,y=x2 ,y=x3,y= 和y= 的图象, 结合解析式观察函数图象,将你发现的结论填写在表内.
新知探究问题3 请你在同一坐标系中画出函数y=x,y=x2 ,y=x3,y= 和y= 的图象, 结合解析式观察函数图象,将你发现的结论填写在表内 .
追问2 这5个幂函数的图象均过第一象限, 如何确定是否过第二或第三象限?如果定义域为{x|x≥0}, 则不过第二、三象限, 比如y= ;如果定义域包含( - ∞ , 0) , 可以结合奇偶性判断,如果为偶函数, 则过第二象限, 比如y=x2;如果为奇函数, 则过第三象限, 比如y=x和y=x3 .
新知探究追问1 结合图1和表1, 你能总结出这5个幂函数的共性吗?
图象都过点(1, 1) , 图象都经过第一象限 .
新知探究追问3 在第一象限中, 如何区分这5个函数的图象?y= 在(0, +∞) 上单调递减, 图象向上与y轴无限接近,向右与x轴无限接近, 其余均单调递增. y=x的图象是一条直线,
其余全是曲线; 当0<x<1时,当x>1时,y=x的图象位于该直线的下方 .相比y= 的图象,y=x2和y=x3 的图象与y=x的图象的位置关系正好相反(如图2),
y=x的图象位于该直线的上方;
新知探究追问3 在第一象限中, 如何区分这5个函数的图象?即: 当0<x<1时,y=x2 的图象位于y=x3 的图象的上方,当x>1时,y=x2 的图象位于y=x3 的图象的下方(如图3) .
例1 证明幂函数 f(x)= 是增函数 .证明: 函数的定义域是[0, +∞) .∀x1 ,x2 ∈[0, +∞) , 且x1<x2,f(x1 )-f(x2 )= = = 因为x1-x2<0, >0, 所以f(x1 )<f(x2 ), 即幂函数f(x)= 是增函数 .
解:(1)( -1.5)3和( -1.4)3可看作函数y=x3 当x分别取-1.5和- 1.4时所对应的两个函数值 .y=x3在( - ∞ , +∞) 上单调递增,因为-1.5< -1.4, 所以( -1.5)3 <( -1.4)3 .
新知探究例2 利用幂函数的性质, 比较下列各题中两个值的大小: (1)( -1.5)3 ,( -1.4)3; (2)
新知探究例2 利用幂函数的性质, 比较下列各题中两个值的大小: (1)( -1.5)3 ,( -1.4)3; (2) 解:(2) 和 可看作函数y= 当x分别取-1.5和-1.4时所对应的两个函数值 .y= 在( - ∞ , +∞) 上单调递增,因为-1.5< -1.4, 所 以
归纳小结问题4 回忆本节课的内容,请你回答以下几个问题:(1)什么是幂函数?你能简单说一说本节课所学的5个幂函数的性质吗?(2)你能说说幂函数和正比例函数, 反比例函数, 二次函数的区别和联系吗?
(1)概念和性质略;(2)幂函数和正比例函数, 反比例函数, 二次函数的交集分别是y=x,y= ,y=x2 , 除此之外, 别无交集 .
答案:y= ,x≥0 .
1. 已知幂函数y=f(x)的图象过点(2, ), 求这个函数的解析式.
目标检测2. 根据单调性和奇偶性的定义证明函数f(x)=x3 的单调性和奇偶性.证明: 因为函数f(x)=x3定义域为R.∀x∈R , 都有-x∈R , 且f(-x)=(-x)3 =-x3 =-f(x),函数f(x)=x3为奇函数 .任取x1 ,x2 ∈R , 且x1<x2,
目标检测2. 根据单调性和奇偶性的定义证明函数f(x)=x3 的单调性和奇偶性.证明:f(x1 )-f(x2 )=(x1-x2 ) [x12+x1x2+x22]=(x1-x2 ) [x12+x1x2 + x22 + x22]=(x1-x2 ) [(x12 + x2 )2 + x22] .因为x1-x2<0,(x12 + x2 )2 + x22>0, 所以f(x1 )<f(x2 ),即幂函数f(x)=x3是增函数 .
谢谢大家敬请各位老师提出宝贵意见!
高中数学人教A版 (2019)必修 第一册3.3 幂函数多媒体教学ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册<a href="/sx/tb_c4000269_t3/?tag_id=26" target="_blank">3.3 幂函数多媒体教学ppt课件</a>,共16页。PPT课件主要包含了概念生成,非奇非偶函数,奇函数,0+∞,xx≠0,yy≠0,偶函数,非奇非偶,在R上单调递增,公共点为11等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第一册第三章 函数的概念与性质3.3 幂函数示范课ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册第三章 函数的概念与性质3.3 幂函数示范课ppt课件,共34页。
高中数学人教A版 (2019)必修 第一册3.3 幂函数评课课件ppt: 这是一份高中数学人教A版 (2019)必修 第一册3.3 幂函数评课课件ppt,共14页。PPT课件主要包含了导入新课,精彩课堂,例题剖析,课堂练习,fxx2,课堂总结等内容,欢迎下载使用。