|试卷下载
搜索
    上传资料 赚现金
    2.8 数轴贯穿有理数的经典考法【九大题型】(举一反三)(苏科版)(学生版)
    立即下载
    加入资料篮
    2.8 数轴贯穿有理数的经典考法【九大题型】(举一反三)(苏科版)(学生版)01
    2.8 数轴贯穿有理数的经典考法【九大题型】(举一反三)(苏科版)(学生版)02
    2.8 数轴贯穿有理数的经典考法【九大题型】(举一反三)(苏科版)(学生版)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学2.3 数轴课后复习题

    展开
    这是一份初中数学2.3 数轴课后复习题,共24页。


    TOC \ "1-3" \h \u
    \l "_Tc6890" 【题型1 数轴上点的平移】 PAGEREF _Tc6890 \h 1
    \l "_Tc594" 【题型2 数轴上点表示的数】 PAGEREF _Tc594 \h 3
    \l "_Tc28893" 【题型3 判断数轴上点的符号或原点位置】 PAGEREF _Tc28893 \h 4
    \l "_Tc22819" 【题型4 数轴上两点距离的和差倍分问题】 PAGEREF _Tc22819 \h 5
    \l "_Tc24075" 【题型6 数轴与方程思想的运算】 PAGEREF _Tc24075 \h 12
    \l "_Tc18905" 【题型7 数轴上的动点定值问题】 PAGEREF _Tc18905 \h 13
    \l "_Tc15313" 【题型8 数轴上的折叠问题】 PAGEREF _Tc15313 \h 17
    \l "_Tc5872" 【题型9 数轴上点的规律问题】 PAGEREF _Tc5872 \h 20
    【题型1 数轴上点的平移】
    【例1】(2022•惠安县校级月考)在数轴上有三个点A、B、C,如图所示.
    (1)将点B向左平移4个单位,此时该点表示的数是 ;
    (2)将点C向左平移3个单位得到数m,再向右平移2个单位得到数n,则m,n分别是多少?
    (3)怎样移动A、B、C中的两点,使三个点表示的数相同?你有几种方法?
    【变式1-1】(2022•沂水县一模)在数轴上,点A,B在原点O的两侧,分别表示数a,1,将点A向右平移2个单位长度,得到点C(点C不与点B重合),若CO=BO,则a的值为( )
    A.1B.﹣1C.﹣2D.﹣3
    【变式1-2】(2022•乳山市期中)已知点A,B在数轴上表示的数分别是﹣2,3,解决下列问题:
    (1)将点A在数轴上向左平移13个单位长度后记为A1,A1表示的数是 ,将点B在数轴上向右平移1个单位长度后记为B1,B1表示的数是 ;
    (2)在(1)的条件下,将点B1向 移动 个单位长度后记为B2,则B2表示的数与A1表示的数互为相反数;
    (3)在(2)的条件下,将原点在数轴上移动5个单位长度,则点B2表示的数是多少?
    【变式1-3】(2022•工业园区期末)【理解概念】
    对数轴上的点P按照如下方式进行操作:先把点P表示的数乘以2,再把表示得到的这个数的点沿数轴向右平移3个单位长度,得到点P′.这样的操作称为点P的“倍移”,数轴上的点A、B、C、D、E、F经过“倍移”后,得到的点分别为A′、B′、C′、D′、E′、F′.
    【巩固新知】
    (1)若点A表示的数为﹣1,则点A′表示的数为 .
    (2)若点B′表示的数为9,则点B表示的数为 .
    【应用拓展】
    (3)若点C表示的数为5,且CD′=3CD,求点D表示的数;
    (4)已知点E在点F的左侧,将点E′、F′再次进行“倍移”后,得到的点分别为E″、F″,若E″F″=2020,求EF的长.
    【题型2 数轴上点表示的数】
    【例2】(2022秋•三元区期中)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr,本题中π的取值为3.14)
    (1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是 ;
    (2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,﹣5,+4,+3,﹣2
    ①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?
    ②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?
    【变式2-1】(2022秋•德惠市校级月考)东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:
    (1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).
    (2)聪聪家与刚刚家相距多远?
    (3)聪聪家向西20米所表示的数是多少?
    (4)你认为可用什么办法求数轴上两点之间的距离?
    【变式2-2】(2022春•海淀区校级月考)直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,点O'对应的数是( )
    A.3B.3.1C.πD.3.2
    【变式2-3】(2022•南安市模拟)如图,数轴上点D对应的数为d,则数轴上与数﹣3d对应的点可能是( )
    A.点AB.点BC.点DD.点E
    【题型3 判断数轴上点的符号或原点位置】
    【例3】(2022秋•岳池县期中)有理数a、b、c在数轴上所对应的点的位置如图所示,有下列四个结论:①(a+b)(b+c)(c+a)>0;②b<b2<1b;③|a|<1﹣bc;④|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|=a.其中正确的结论有( )个.
    A.4B.3C.2D.1
    【变式3-1】(2022秋•新郑市期中)已知小红、小刚,小明、小颖四人自南向北依次站在同一直线上,如果把直线看作数轴,四人所在的位置如图所示,则下列描述错误的是( )
    A.数轴是以小明所在的位置为原点
    B.数轴采用向北为正方向
    C.小刚所在的位置对应的数有可能是-53
    D.小刚在小颖的南边
    【变式3-2】(2022秋•海淀区校级期末)如图,数轴上点A,M,B分别表示数a,a+b,b,那么原点的位置可能是( )
    A.线段AM上,且靠近点AB.线段AB上,且靠近点B
    C.线段BM上,且靠近点BD.线段BM上,且靠近点M
    【变式3-3】(2022秋•海陵区校级期中)如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示﹣1,﹣2的两点(不包括这两点)之间移动,则下列判断正确的是( )
    A.m2﹣2n的值一定小于0
    B.|3m+n|的值一定小于2
    C.1m-n的值可能比2000大
    D.1m+1n的值不可能比2000大
    【题型4 数轴上两点距离的和差倍分问题】
    【例4】(2022秋•盱眙县期中)已知数轴上两点A、B,其中A表示的数为﹣2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”,例如图1所示,若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
    请根据上述规定回答下列问题:
    (1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为﹣3,则n= .
    (2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为 ;
    (3)若点E在数轴上(不与A、B重合),满足B、E之间的距离是A、E之间距离的一半,且此时点E为点A、B的“n节点”,求出n的值.
    【变式4-1】(2022秋•江夏区校级月考)在数轴上,点A代表的数是﹣12,点B代表的数是2,AB代表点A与点B之间的距离.
    (1)①AB= ;
    ②若点P为数轴上点A与B之间的一个点,且AP=6,则BP= ;
    ③若点P为数轴上一点,且BP=2,则AP= .
    (2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是35,求C点表示的数.
    (3)若P从点A出发,Q从原点出发,M从点B出发,且P、Q、M同时向数轴负方向运动,P点的运动速度是每秒6个单位长度,Q点的运动速度是每秒8个单位长度,M点的运动速度是每秒2个单位长度,当P、Q、M同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?
    【变式4-2】(2022•长汀县期中)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
    例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
    如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
    (1)数 所表示的点是{M,N}的奇点;数 所表示的点是{N,M}的奇点;
    (2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
    【变式4-3】(2022•湖里区校级期中)已知数轴上两点A.B对应的数分别为﹣2和7,点M为数轴上一动点.
    (1)请画出数轴,并在数轴上标出点A、点B;
    (2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是【A,B】的好点.
    ①若点M运动到原点O时,此时点M 【A,B】的好点(填是或者不是)
    ②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间
    (3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.
    【题型5 数轴上的行程问题】
    【例5】(2022秋•东阿县期末)如图,三点A、B、P在数轴上,点A、B在数轴上表示的数分别是﹣4,12(AB两点间的距离用AB表示)
    (1)C在AB之间且AC=BC,C对应的数为 ;
    (2)C在数轴上,且AC+BC=20,求C对应的数;
    (3)P从A点出发以1个单位/秒的速度在数轴向右运动,Q从B点同时出发,以2个单位/秒在数轴上向左运动.
    求:①P、Q相遇时求P对应的数
    ②P、Q运动的同时M以3个单位长度/秒的速度从O点向左运动.当遇到P时,点M立即以同样的速度(3个单位/秒)向右运动,并不停地往返于点P与点Q之间,求当点P与点Q相遇时,点M所经过的总路程是多少?
    【变式5-1】(2022秋•市中区校级期中)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.
    (1)请写出与A、B两点距离相等的点M所对应的数;
    (2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?
    (3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?
    【变式5-2】(2022•越秀区二模)甲、乙两个昆虫分别在数轴原点和+8的A处,分别以1单位长度/s,1.5单位长度/s速度同时相向而行.
    (1)第一次相遇在数轴上何处;
    (2)若同时沿数轴的负方向而行,乙昆虫在数轴上何处追上甲昆虫?
    (3)在(1)的条件下,两个昆虫分别到达点A和O处后迅速返回第二次相遇于数轴何处?
    【变式5-3】(2022春•南关区校级月考)一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点M,N开始时所表示的数分别为﹣10,5,M,N两点各自以一定的速度在数轴上运动,且M点的运动速度为2个单位长度/s.
    (1)M,N两点同时出发相向而行,在原点处相遇,求N点的运动速度.
    (2)M,N两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
    (3)M,N两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C点从原点出发沿同方向运动,且在运动过程中,始终有CN:CM=1:2.若干秒后,C点在﹣12处,求此时N点在数轴上的位置.
    【题型6 数轴与方程思想的运算】
    【例6】(2022秋•越秀区校级期中)在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a,b,c,d表示的点是这些点中的4个,且在数轴上的位置如图所示.已知3a=4b﹣3,则代数式c﹣5d的值是( )
    A.﹣20B.﹣16C.﹣12D.﹣8
    【变式6-1】(2022秋•余姚市期末)数轴上有6个点.每相邻两个点之间的距离是1个单位长,有理数a,b,c,d所对应的点是这些点中的4个,位置如图所示:
    (1)完成填空:c﹣a= ,d﹣c= ,d﹣a= ;
    (2)比较a+d和b+c的大小;
    (3)如果4c=a+2b,求a+b﹣c+d的值.
    【变式6-2】(2022秋•武昌区校级月考)如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是a、b、c、d,且b﹣2a=9,请在图中标出原点O,并求出3c+d﹣2a的值.
    【变式6-3】(2022•洛川县校级期末)如图所示,数轴(不完整)上标有若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是a,b,c,d,且有一个点表示的是原点.若d+2a+5=0,则表示原点的应是点 .
    【题型7 数轴上的动点定值问题】
    【例7】(2022秋•普宁市期末)已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:
    (1)运动前线段AB的长为 ; 运动1秒后线段AB的长为 ;
    (2)运动t秒后,点A,点B运动的距离分别为 和 ;
    (3)求t为何值时,点A与点B恰好重合;
    (4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值; 若不存在,请说明理由.
    【变式7-1】(2022秋•绥宁县期中)阅读下面的材料:
    如图1,在数轴上A点所示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.
    请用上面的知识解答下面的问题:
    如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.
    (1)请你在数轴上表示出A.B.C三点的位置:
    (2)点C到点A的距离CA= cm;若数轴上有一点D,且AD=4,则点D表示的数为 ;
    (3)若将点A向右移动xcm,则移动后的点表示的数为 ;(用代数式表示)
    (4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,
    试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.
    【变式7-2】(2022秋•黄陂区期末)数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.
    (1)直接写出A,B,C对应的数a,b,c的值.
    (2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.
    (3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求AC-MNEF的值.
    【变式7-3】(2022•荔湾区期末)数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.
    (1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;
    (2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求ABOM的值.
    【题型8 数轴上的折叠问题】
    【例8】(2022秋•丰台区校级期中)平移和翻折是初中数学两种重要的图形变化
    (1)平移运动
    ①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是
    A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1 C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1
    ②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 .
    (2)翻折变换
    ①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 的点重合;
    ②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示 B点表示 .
    ③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为 .(用含有a,b的式子表示)
    【变式8-1】(2022秋•苏州期末)一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是 .
    【变式8-2】(2022秋•丰城市期中)操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),
    操作一:(1)折叠纸面,使1表示的点与﹣1表示的点重合,则﹣3表示的点与 表示的点重合;
    操作二:(2)折叠纸面,使﹣2表示的点与6表示的点重合,请你回答以下问题:
    ①﹣5表示的点与数 表示的点重合;
    ②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少
    ③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值.
    【变式8-3】(2022秋•邗江区校级月考)已知在纸面上有一数轴,折叠纸面.
    (1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合
    (2)若﹣2表示的点与4表示的点重合,回答以下问题:
    ①数7对应的点与数 对应的点重合;
    ②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?
    (3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C原来表示的数是多少?请列式计算,说明理由.
    【题型9 数轴上点的规律问题】
    【例9】(2022秋•茅箭区校级月考)已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+6|+(b+3)2=0,又b,c互为相反数.
    (1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.
    (3)若电子蚂蚁从B点开始连续移动,第1次向右移动1个单位长度;第2次向右移动2个单位长度;第3次向左移动3个单位长度;第4次向左移动4个单位长度;第5次向右移动5个单位长度;第6次向右移动6个单位长度;第7次向左移动7个单位长度;第8次向左移动8个单位长度…依次操作第2019次移动后到达点P,求P点表示的数.
    【变式9-1】(2022秋•成都期末)在数轴上,点P表示的数是a,点P′表示的数是11-a,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,An.若点A1在数轴表示的数是12,则点A2016在数轴上表示的数是 .
    【变式9-2】(2022秋•翁牛特旗期中)已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.
    (1)数轴上A、B两点的距离为 8 .
    (2)当P点满足PB=2PA时,求P点表示的数.
    (3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.
    ①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则k的值是多少?
    ②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是__ (请直接写答案).
    【变式9-3】(2022秋•海淀区校级期中)如图,数轴上有三个点A、B、C,表示的数分别是﹣4、﹣2、3,请回答:
    (1)若将点B向左移动3个单位后,三个点所表示的数中,最小的数是 ;
    (2)若使点B所表示的数最大,则需将点C至少向 移动 个单位;
    (3)若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动 个单位;
    (4)若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最少的是 个单位;
    (5)若在原点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第101次时,应跳________-步,落脚点表示的数是 ;跳了第n次(n是正整数)时,落脚点表示的数是 .
    相关试卷

    初中数学第2章 有理数2.3 数轴课后测评: 这是一份初中数学<a href="/sx/tb_c15003_t7/?tag_id=28" target="_blank">第2章 有理数2.3 数轴课后测评</a>,共34页。

    苏科版七年级上册2.3 数轴同步测试题: 这是一份苏科版七年级上册<a href="/sx/tb_c15003_t7/?tag_id=28" target="_blank">2.3 数轴同步测试题</a>,共21页。

    七年级上册2.3 数轴巩固练习: 这是一份七年级上册<a href="/sx/tb_c15003_t7/?tag_id=28" target="_blank">2.3 数轴巩固练习</a>,共47页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map