资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
成套系列资料,整套一键下载
- 专题5.5点的坐标变化规律探究问题专项提升训练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题5.6坐标与对称平移综合问题大题专项提升训练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题5.8平面直角坐标系的实际应用问题专项提升训练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题5.9第5章平面直角坐标系单元测试(基础过关卷)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
- 专题5.10第5章平面直角坐标系单元测试(培优压轴卷)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】 试卷 0 次下载
专题5.7坐标系中的新定义问题大题专项提升训练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】
展开
这是一份专题5.7坐标系中的新定义问题大题专项提升训练(重难点培优)-【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】,文件包含专题57坐标系中的新定义问题大题专项提升训练重难点培优-讲练课堂2022-2023学年八年级数学上册尖子生同步培优题典原卷版苏科版docx、专题57坐标系中的新定义问题大题专项提升训练重难点培优-讲练课堂2022-2023学年八年级数学上册尖子生同步培优题典解析版苏科版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题5.7坐标系中的新定义问题大题专项提升训练(重难点培优)一.解答题(共22小题)1.(2022春•海门市期末)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如:点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点 ;(2)若点A的坐标是(﹣2,4)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(3,﹣1)与点B(m,n)互为“对角点”,且点B在第四象限,求m,n的取值范围.2.(2021秋•丰县校级月考)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(2,﹣6)的“级关联点”是点B,求点B的坐标;(2)已知点P的5级关联点为(9,﹣3),求点P坐标;(3)已知点M(m﹣1,2m)的“﹣4级关联点”N位于坐标轴上,求点N的坐标.3.(2021秋•锡山区期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m﹣1,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.4.(2021秋•工业园区校级期中)定义:若实数x,y,x′,y′满足x=kx′+3,y=ky′+3(k为常数,k≠0),则在平面直角坐标系xOy中,称点(x,y)是点(x',y')的“k值关联点”.例如,点(7,﹣5)是点(1,﹣2)的“4值关联点”.(1)判断在A(2,3),B(2,4)两点中,哪个是P(1,﹣1)的“k值关联点”;(2)设两个不相等的非零实数m,n满足点E(m2+mn,2n2)是点F(m,n)的“k值关联点”求点F到原点O的距离的最小值.5.(2021秋•滨海县校级月考)已知当m,n都是实数,且满足2m=8+n时,称p(m﹣1,)为“开心点”.例如点A(5,3)为“开心点”.因为当A(5,3)时,m﹣1=5,=3,得m=6,n=4,所以2m=2×6=12,8+n=8+4=12,所以2m=8+n.所以A(5,3)是“开心点”.(1)判断点B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.6.(2020春•崇川区校级期末)在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为 ;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.7.(2021秋•常熟市校级月考)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,求点A1的坐标.(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上.求点M′的坐标.8.(2022春•海安市校级月考)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,b+)(其中k为常数,且k≠0),则称点P′为点P的“k系好友点”;例如:P(3,2)的“3系好友点”为P′(3+3×2,2+),即P′(9,3).请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P′的坐标为 .(2)若点P在y轴的正半轴上,点P的“k系好友点”为P′点,若在△OPP′中,PP′=3OP,求k的值.(3)已知点A在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.9.(2022春•启东市期末)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是 ;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为 ;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.10.(2021秋•江阴市月考)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB.如果点P的横坐标比纵坐标大1,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.(1)判断点C(,)是否是线段AB的“邻近点”,并说明理由;(2)若点Q(m,n)是线段AB的“邻近点”,求m的取值范围.11.(2021秋•亭湖区校级月考)在平面直角坐标系中,M(a,b),N(c,d),对于任意的实数,我们称P(ka+kc,kb+kd)为点M和点N的k系和点.例如,已知M(2,3),N(1,﹣2),点M和点N的2系和点为K(6,2).横、纵坐标都为整数的点叫做整点,已知A(1,2),B(2,0).(1)点A和点B的系和点的坐标为 (直接写出答案);(2)已知点C(m,2),若点B和点C的k系和点为点D,点D在第一、三象限的角平分线上.①求m的值;②若点D为整点,且三角形BCD的内部(不包括边界)恰有3个整点,求k的值.12.(2021春•崇川区期末)【了解概念】在平面直角坐标系xOy中,若P(a,b),Q(c,d),式子|a﹣c|+|b﹣d|的值就叫做线段PQ的“勾股距”,记作dPQ=|a﹣c|+|b﹣d|,同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.【理解运用】在平面直角坐标系xOy中,A(2,3),B(4,2),C(m,n).(1)线段OA的“勾股距”dOA= ;(2)若点C在第三象限,且dOC=2dAB,求dAC并判断△ABC是否为“等距三角形”;【拓展提升】(3)若点C在x轴上,△ABC是“等距三角形”,请直接写出m的取值范围.13.(2021秋•射阳县校级期末)阅读下列一段文字,然后回答下列问题:已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=|x1﹣x2|或|y1﹣y2|.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于y轴的同一条直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.14.(2021秋•常熟市校级月考)阅读材料:两点间的距离公式:如果直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=.则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(2,3),则AB=,根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,﹣3),则A、B两点间的距离是 .(2)若点A(﹣2,3),点B在坐标轴上,且A、B两点间的距离是5,求B点坐标.(3)若点A(x,3),B(3,x+1),且A、B两点间的距离是5,求x的值.15.(2021春•海安市校级月考)问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为 .(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为 .【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t= .(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)= .16.(2016秋•虎丘区校级期中)先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.17.(2021春•海安市期中)在平面直角坐标系中,已知点A(x,y),点B(x﹣my,mx﹣y)(其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2)的“3族衍生点”B的坐标为(1﹣3×2,3×1﹣2),即B(﹣5,1).(1)点(2,0)的“2族衍生点”的坐标为 ;(2)若点A的“3族衍生点”B的坐标是(﹣1,5),则点A的坐标为 ;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点“为点B,且AB=OA,求m的值;(4)若点A(x,y)的“m族衍生点”与“﹣m族衍生点”关于y轴对称,则点A在 ;(5)若点A(x,y)的“m族衍生点”(m≠1)在第一、三象限的角平分线上,则点A在 .(描述点A的位置)18.(2021秋•金安区校级期中)已知当m,n都是实数,且满足2m=8+n时,称P(m,n+2)为“开心点”.例如点A(6,6)为“开心点”.因为当A(6,6)时,m=6,n+2=6,得m=6,n=4.所以2m=2×6=12,8+n=8+4=12,所以2m=8+n.所以A(6,6)是“开心点.(1)判断点B(4,5) (填“是”或“不是”)“开心点”;(2,若点M(a,a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.19.(2020春•新余期末)已知当m,n都是实数,且满足2m=8+n时,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点M(a,2a﹣1)是“爱心点”,请判断点M在第几象限?并说明理由.20.(2021春•石城县期末)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为 ;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.21.(2018春•香洲区期末)对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2衍生点”P′的坐标为 .(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.22.(2020•开福区校级开学)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“近似距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“近似距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“近似距离”为|y1﹣y2|;(1)已知点P(﹣3,4)、点Q(1,1),则点P与点Q的“近似距离”为 .(2)已知点A(0,﹣2),B为x轴上的动点,①若点A与B的“近似距离”为3,写出满足条件的B点的坐标 .②直接写出点A与点B的“近似距离”的最小值 .(3)已知C(2m+2,m),D(1,0),写出点C与点D的“近似距离”的最小值及相应的C点坐标
【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题5.7坐标系中的新定义问题大题专项提升训练(重难点培优)一.解答题(共22小题)1.(2022春•海门市期末)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如:点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点 ;(2)若点A的坐标是(﹣2,4)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(3,﹣1)与点B(m,n)互为“对角点”,且点B在第四象限,求m,n的取值范围.2.(2021秋•丰县校级月考)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(2,﹣6)的“级关联点”是点B,求点B的坐标;(2)已知点P的5级关联点为(9,﹣3),求点P坐标;(3)已知点M(m﹣1,2m)的“﹣4级关联点”N位于坐标轴上,求点N的坐标.3.(2021秋•锡山区期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m﹣1,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.4.(2021秋•工业园区校级期中)定义:若实数x,y,x′,y′满足x=kx′+3,y=ky′+3(k为常数,k≠0),则在平面直角坐标系xOy中,称点(x,y)是点(x',y')的“k值关联点”.例如,点(7,﹣5)是点(1,﹣2)的“4值关联点”.(1)判断在A(2,3),B(2,4)两点中,哪个是P(1,﹣1)的“k值关联点”;(2)设两个不相等的非零实数m,n满足点E(m2+mn,2n2)是点F(m,n)的“k值关联点”求点F到原点O的距离的最小值.5.(2021秋•滨海县校级月考)已知当m,n都是实数,且满足2m=8+n时,称p(m﹣1,)为“开心点”.例如点A(5,3)为“开心点”.因为当A(5,3)时,m﹣1=5,=3,得m=6,n=4,所以2m=2×6=12,8+n=8+4=12,所以2m=8+n.所以A(5,3)是“开心点”.(1)判断点B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.6.(2020春•崇川区校级期末)在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为 ;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.7.(2021秋•常熟市校级月考)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,求点A1的坐标.(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上.求点M′的坐标.8.(2022春•海安市校级月考)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,b+)(其中k为常数,且k≠0),则称点P′为点P的“k系好友点”;例如:P(3,2)的“3系好友点”为P′(3+3×2,2+),即P′(9,3).请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P′的坐标为 .(2)若点P在y轴的正半轴上,点P的“k系好友点”为P′点,若在△OPP′中,PP′=3OP,求k的值.(3)已知点A在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.9.(2022春•启东市期末)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是 ;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为 ;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.10.(2021秋•江阴市月考)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB.如果点P的横坐标比纵坐标大1,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.(1)判断点C(,)是否是线段AB的“邻近点”,并说明理由;(2)若点Q(m,n)是线段AB的“邻近点”,求m的取值范围.11.(2021秋•亭湖区校级月考)在平面直角坐标系中,M(a,b),N(c,d),对于任意的实数,我们称P(ka+kc,kb+kd)为点M和点N的k系和点.例如,已知M(2,3),N(1,﹣2),点M和点N的2系和点为K(6,2).横、纵坐标都为整数的点叫做整点,已知A(1,2),B(2,0).(1)点A和点B的系和点的坐标为 (直接写出答案);(2)已知点C(m,2),若点B和点C的k系和点为点D,点D在第一、三象限的角平分线上.①求m的值;②若点D为整点,且三角形BCD的内部(不包括边界)恰有3个整点,求k的值.12.(2021春•崇川区期末)【了解概念】在平面直角坐标系xOy中,若P(a,b),Q(c,d),式子|a﹣c|+|b﹣d|的值就叫做线段PQ的“勾股距”,记作dPQ=|a﹣c|+|b﹣d|,同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.【理解运用】在平面直角坐标系xOy中,A(2,3),B(4,2),C(m,n).(1)线段OA的“勾股距”dOA= ;(2)若点C在第三象限,且dOC=2dAB,求dAC并判断△ABC是否为“等距三角形”;【拓展提升】(3)若点C在x轴上,△ABC是“等距三角形”,请直接写出m的取值范围.13.(2021秋•射阳县校级期末)阅读下列一段文字,然后回答下列问题:已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=|x1﹣x2|或|y1﹣y2|.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于y轴的同一条直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.14.(2021秋•常熟市校级月考)阅读材料:两点间的距离公式:如果直角坐标系内有两点A(x1,y1)、B(x2,y2),那么A、B两点的距离AB=.则AB2=(x1﹣x2)2+(y1﹣y2)2.例如:若点A(4,1),B(2,3),则AB=,根据上面材料完成下列各题:(1)若点A(﹣2,3),B(1,﹣3),则A、B两点间的距离是 .(2)若点A(﹣2,3),点B在坐标轴上,且A、B两点间的距离是5,求B点坐标.(3)若点A(x,3),B(3,x+1),且A、B两点间的距离是5,求x的值.15.(2021春•海安市校级月考)问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为 .(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为 .【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t= .(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)= .16.(2016秋•虎丘区校级期中)先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.17.(2021春•海安市期中)在平面直角坐标系中,已知点A(x,y),点B(x﹣my,mx﹣y)(其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2)的“3族衍生点”B的坐标为(1﹣3×2,3×1﹣2),即B(﹣5,1).(1)点(2,0)的“2族衍生点”的坐标为 ;(2)若点A的“3族衍生点”B的坐标是(﹣1,5),则点A的坐标为 ;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点“为点B,且AB=OA,求m的值;(4)若点A(x,y)的“m族衍生点”与“﹣m族衍生点”关于y轴对称,则点A在 ;(5)若点A(x,y)的“m族衍生点”(m≠1)在第一、三象限的角平分线上,则点A在 .(描述点A的位置)18.(2021秋•金安区校级期中)已知当m,n都是实数,且满足2m=8+n时,称P(m,n+2)为“开心点”.例如点A(6,6)为“开心点”.因为当A(6,6)时,m=6,n+2=6,得m=6,n=4.所以2m=2×6=12,8+n=8+4=12,所以2m=8+n.所以A(6,6)是“开心点.(1)判断点B(4,5) (填“是”或“不是”)“开心点”;(2,若点M(a,a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.19.(2020春•新余期末)已知当m,n都是实数,且满足2m=8+n时,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点M(a,2a﹣1)是“爱心点”,请判断点M在第几象限?并说明理由.20.(2021春•石城县期末)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为 ;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.21.(2018春•香洲区期末)对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2衍生点”P′的坐标为 .(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.22.(2020•开福区校级开学)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“近似距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“近似距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“近似距离”为|y1﹣y2|;(1)已知点P(﹣3,4)、点Q(1,1),则点P与点Q的“近似距离”为 .(2)已知点A(0,﹣2),B为x轴上的动点,①若点A与B的“近似距离”为3,写出满足条件的B点的坐标 .②直接写出点A与点B的“近似距离”的最小值 .(3)已知C(2m+2,m),D(1,0),写出点C与点D的“近似距离”的最小值及相应的C点坐标
相关资料
更多