数学八年级下册18.2.2 菱形一等奖课件ppt
展开
这是一份数学八年级下册18.2.2 菱形一等奖课件ppt,共20页。PPT课件主要包含了学习目标,情景导入,知识精讲,有一个角是直角,平行四边形,菱形的特殊性质,平行四边形的性质,针对练习,第1题图,第2题图等内容,欢迎下载使用。
1.了解菱形的概念及其与平行四边形的关系.2.能运用菱形的性质定理进行简单的计算与证明.重点难点:1.探索并证明菱形的性质定理. 2.应用菱形的性质定理解决相关计算或证明问题.
观察下面图形,长方形在生活中无处不在.
图片中出现的图形是平行四边形,和菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.
知识点一 菱形的性质
前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.
思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?
平行四边形不一定是菱形.
命题1 菱形的四条边都相等. 猜想2 菱形的两条对角线互相垂直,并且每一条对角 线平分一组对角.
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O. 求证:(1)AB = BC = CD =AD; (2)AC⊥BD;∠DAC=∠BAC, ∠DCA=∠BCA, ∠ADB=∠CDB, ∠ABD=∠CBD.
证明:(1)∵四边形ABCD是平行四边形,∴AB = CD,AD = BC(平行四边形的对边相等).又∵AB=AD,∴AB = BC = CD =AD.
(2)∵AB = AD,∴△ABD是等腰三角形.又∵四边形ABCD是平行四边形,∴OB = OD (平行四边形的对角线互相平分).在等腰三角形ABD中,∵OB = OD,∴AO⊥BD,AO平分∠BAD,即AC⊥BD,∠DAC=∠BAC.同理可证∠DCA=∠BCA, ∠ADB=∠CDB,∠ABD=∠CBD.
菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.
对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.
角:对角相等.边:对边平行且相等.对角线:相互平分.
例1 如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形,∴AC⊥BD,AO= AC,BO= BD.∵AC=6cm,BD=12cm,∴AO=3cm,BO=6cm.在Rt△ABO中,由勾股定理得∴菱形的周长=4AB=4×3 =12 (cm).
1.如图,在菱形ABCD中,已知∠A=60°,AB= 5,则△ABD的周长是 ( ) A.10 B.12 C.15 D.20
2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.
知识点二 菱形的面积
问题1 菱形是特殊的平行四边形,那么能否利用平行四边形的面积公式计算菱形ABCD的面积呢?
思考 前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?
能.过点A作AE⊥BC于点E,则S菱形ABCD=底×高 =BC·AE.
问题2 如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.
解:∵四边形ABCD是菱形,∴AC⊥BD,∴S菱形ABCD=S△ABC +S△ADC= AC·BO+ AC·DO= AC(BO+DO)= AC·BD.
菱形的面积 = 底×高 = 对角线乘积的一半
例4 如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
解:在Rt△AOB中,OA=5,OB=12,∴S△AOB= OA·OB= ×5×12=30,∴S菱形ABCD=4S△AOB=4×30=120.∵又∵菱形两组对边的距离相等,∴S菱形ABCD=AB·h=13h,∴13h=120,得h= .
菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.
1.如图,已知菱形的两条对角线长分别为6cm和8cm,则这个菱形的高DE为( ) C.5cm
1.菱形具有而一般平行四边形不具有的性质是( )
A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等
2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于 ( ) A.18 B.16 C.15 D.14
3.如图,四边形ABCD是边长为13cm的菱形,其中对 角线BD长10cm.
求:(1)对角线AC的长度; (2)菱形ABCD的面积.
解:(1)∵四边形ABCD是菱形,
(2)菱形ABCD的面积
∴AC=2AE=2×12=24(cm).
4.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E. 求证:∠AFD=∠CBE. 证明:∵四边形ABCD是菱形,∴CB=CD, CA平分∠BCD.∴∠BCE=∠DCE.又 CE=CE,∴△BCE≌△DCE(SAS).∴∠CBE=∠CDE. ∵在菱形ABCD中,AB∥CD, ∴∠AFD=∠EDC.∴∠AFD=∠CBE.
6.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.
解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△OCD中,由勾股定理得OC=4cm;(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形.又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形.∵OB=OD=3cm,∴S矩形OBEC=OB·OC=4×3=12(cm2).
相关课件
这是一份初中数学人教版八年级下册18.2.2 菱形课文内容ppt课件,共30页。PPT课件主要包含了情境导入,探究点1,菱形的性质,归纳总结,对应训练,探究点2,菱形的面积,菱形面积推导,例题精析,知识结构等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册18.2.2 菱形评课课件ppt,共16页。PPT课件主要包含了活动1,平行四边形与菱形,平行四边形,一组邻边相等,菱形的定义,活动2,请欣赏,活动3,菱形的性质,菱形的四条边都相等等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册18.2.2 菱形精品ppt课件,共23页。PPT课件主要包含了平行四边形,归纳总结,菱形的性质,相等的线段,相等的角,等腰三角形有,直角三角形有,全等三角形有,菱形ABCD中,菱形的面积等内容,欢迎下载使用。