资料中包含下列文件,点击文件名可预览资料内容
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)01](http://img-preview.51jiaoxi.com/2/3/15417551/1-1709180796086/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)02](http://img-preview.51jiaoxi.com/2/3/15417551/1-1709180796118/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)03](http://img-preview.51jiaoxi.com/2/3/15417551/1-1709180796142/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)01](http://img-preview.51jiaoxi.com/2/3/15417551/0-1709180792544/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)02](http://img-preview.51jiaoxi.com/2/3/15417551/0-1709180792618/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)03](http://img-preview.51jiaoxi.com/2/3/15417551/0-1709180792642/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩8页未读,
继续阅读
成套系列资料,整套一键下载
- 专题9.6 正方形的性质与判定【十大题型】-2022-2023学年八年级数学下册举一反三系列(苏科版) 试卷 0 次下载
- 专题9.7 三角形的中位线【九大题型】-2022-2023学年八年级数学下册举一反三系列(苏科版) 试卷 1 次下载
- 专题9.9 四边形中的最值问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版) 试卷 0 次下载
- 专题9.10 平行四边形中常见的四种思想方法专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版) 试卷 0 次下载
- 专题9.11 四边形中动点问题的五大题型专项训练(40道)-2022-2023学年八年级数学下册举一反三系列(苏科版) 试卷 0 次下载
专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版)
展开
这是一份专题9.8 四边形中的折叠问题专项训练(30道)-2022-2023学年八年级数学下册举一反三系列(苏科版),文件包含专题98四边形中的折叠问题专项训练30道举一反三苏科版原卷版docx、专题98四边形中的折叠问题专项训练30道举一反三苏科版解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
专题9.8 四边形中的折叠问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对折叠问题的理解!一.选择题(共10小题)1.(2022•绥化一模)如图,在一张矩形纸片ABCD中AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:①四边形CFHE是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=5.以上结论中,其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个2.(2022•沿河县二模)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为234−6;④当OD⊥AD时,BP=2.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个3.(2022春•溧阳市期末)如图,把正方形纸片ABCD沿对边中点所在直线折叠后展开,折痕为MN;再过点D折叠,使得点A落在MN上的点F处,折痕为DE,则EMFN的值是( )A.3 B.3−1 C.2−3 D.3−34.(2022•衢州模拟)如图矩形ABCD纸片,我们按如下步骤操作:(1)以过点A的直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于点E;(2)将纸片展开后,再次折叠纸片,以过点E所在的直线为折痕,使点A落在BC或BC的延长线上,折痕EF交直线AD或直线AB于F,则∠AFE的值为( )A.22.5° B.67.5° C.22.5°或67.5° D.45°或135°5.(2022•嘉兴二模)如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为( )A.5 B.52 C.655 D.5336.(2022春•宝安区期末)如图,在长方形ABCD中,AD∥BC,AB∥CD,E在AD上.AD=m,AE=n(m>n>0).将长方形沿着BE折叠,A落在A′处,A'E交BC于点G,再将∠A′ED对折,点D落在直线A′E上的D′处,C落在C′处,折痕EF,F在BC上,若D、F、D′三点共线,则BF=( )A.m+12n B.m−n2 C.m+n2 D.m﹣n7.(2022春•普洱期末)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B'处;第二步:如图②,沿EB'折叠,使点A落在BC延长线上的点A'处,折痕为EF.下列结论中错误的是( )A.△AEF是等边三角形 B.EF垂直平分AA' C.CA'=FD D.EA'=AF8.(2022•槐荫区二模)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将四边形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )A.5 B.7 C.8 D.6.59.(2022春•泰兴市月考)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为8,∠B=120°,则EF的值是( )A.23 B.4 C.43 D.610.(2022•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=6,EF=2,∠H=120°,则DN的长为( )A.32 B.6+32 C.6−3 D.23−6二.填空题(共10小题)11.(2022•成华区模拟)如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA′,则△CGA'的周长的最小值为 .12.(2022•安徽二模)如图(1),四边形ABCD是正方形,点E是边AD上的点,将△CDE沿着直线CE折叠,使得点D落在AC上,对应点为F.(1)CDEF= ;(2)如图(2),点G是BC上的点,将△ABG沿着直线AG折叠,使得点B落在AC上,对应点为H,连接FG,EH,则S正方形ABCDS四边形EFGH= .13.(2022•邓州市一模)如图(1)是一张菱形纸片,其中∠A=135°,AB=3+1,点E为BC边上一动点.如图(2),将纸片沿AE翻折,点B的对应点为B';如图(3),将纸片再沿AB'折叠,点E的对应点为E'.当AE'与菱形的边垂直时,BE的长为 .14.(2022春•成都期末)如图,在边长为2的正方形ABCD中,点E,F分别是边BC,AD上的点,连接EF,将四边形ABEF沿EF折叠,点B的对应点G恰好落在CD边上,点A的对应点为H,连接BH.则BH+EF的最小值是 .15.(2022•微山县一模)已知矩形ABCD中,AB=6.点E为AD上一个动点,连接CE,将△CDE沿CE折叠,点D落在点F处,当点F为线段AB的三等分点时,AE的长 .16.(2022春•蜀山区期末)如图,矩形ABCD中,AB=2,∠DAC=30°,点M是BC边的中点,点P是对角线AC上一动点(0<CP<1.5),将△CPM沿PM折叠,点C落在点C'处,线段MC′交AC于点N,连接AC,当△ANC′是直角三角形时,线段AC′的长度为 .17.(2022春•江汉区期末)如图,将矩形ABCD沿直线EF折叠,使点A与点C重合,点B落在点G处,折痕交AD于点E,交BC于点F,若△CEF的面积与△CDE的面积比为4:1,则EFDE的值是 .18.(2022•庐阳区校级三模)如图1,在五边形纸片ABCDE中,AB=1,∠A=120°,将五边形纸片沿BD折叠,点C落在点P处,在AE上取一点Q,将△ABQ和△EDQ分别沿BQ、DQ折叠,点A、E恰好落在点P处.(1)∠C+∠E= °;(2)如图2,若四边形BCDP是菱形,且Q、P、C三点共线时,则BQAB= .19.(2022•长春模拟)如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG的最小值是 .20.(2022•沈河区二模)如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是 .三.解答题(共10小题)21.(2022•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求MNDN的值.22.(2022•张家港市模拟)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF、CE和EF,设EF与AC的交点为O.(1)求证:四边形AFCE是菱形;(2)若AE=213cm,△ABF的为面积12cm2,求△ABF的周长.23.(2022•淮安)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).(1)求证:四边形ABCD是矩形;(2)在四边形ABCD中,求ABBC的值.24.(2022•南岗区模拟)已知:将矩形ABCD折叠,使点A与点C重合,折痕为EF,其中点E,F分别在AB,CD上,点D的对应点为点G,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若∠CFG=60°,连接AC交EF于点O,连接DO,GO,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.(2022春•浦东新区期末)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)求点D的坐标;(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.26.(2022春•江岸区期中)如图,将矩形ABCD纸片对折,设折痕为MN,再通过折叠使B点落在折痕MN上的B',设两条折痕的交点为F,连接BF、EB'、BB'、AB'.(1)求∠ABB'的度数;(2)请判断四边形BFB'E的形状,并说明理由.27.(2022•西固区校级模拟)在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值28.(2022秋•梅列区校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.29.(2022•道外区三模)将等腰三角形ABC折叠,使顶点B与底边AC的中点D重合,折线分别交AB,BC于点F,E,连接DF,DE.(1)如图1,求证:四边形DFBE是菱形;(2)如图2,延长FD至点G,使FD=DG,连接GC,并延长GC交FE的延长线于点H,在不添加任何辅助线的情况下,请直接写出图2中的所有平行四边形(不包括以BF为一边的平行四边形).30.(2022秋•宜宾期末)如图矩形纸片ABCD的边长AB=a,BC=b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.若对角线BD与MN交于点O,分别沿BM、DN折叠,折叠后点A、C恰好都落在点O处,并且得到的四边形是菱形BNDM.请你探索a、b之间的数量关系,并求出当a=3时,菱形BNDM的面积.
专题9.8 四边形中的折叠问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对折叠问题的理解!一.选择题(共10小题)1.(2022•绥化一模)如图,在一张矩形纸片ABCD中AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:①四边形CFHE是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=5.以上结论中,其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个2.(2022•沿河县二模)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为234−6;④当OD⊥AD时,BP=2.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个3.(2022春•溧阳市期末)如图,把正方形纸片ABCD沿对边中点所在直线折叠后展开,折痕为MN;再过点D折叠,使得点A落在MN上的点F处,折痕为DE,则EMFN的值是( )A.3 B.3−1 C.2−3 D.3−34.(2022•衢州模拟)如图矩形ABCD纸片,我们按如下步骤操作:(1)以过点A的直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于点E;(2)将纸片展开后,再次折叠纸片,以过点E所在的直线为折痕,使点A落在BC或BC的延长线上,折痕EF交直线AD或直线AB于F,则∠AFE的值为( )A.22.5° B.67.5° C.22.5°或67.5° D.45°或135°5.(2022•嘉兴二模)如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为( )A.5 B.52 C.655 D.5336.(2022春•宝安区期末)如图,在长方形ABCD中,AD∥BC,AB∥CD,E在AD上.AD=m,AE=n(m>n>0).将长方形沿着BE折叠,A落在A′处,A'E交BC于点G,再将∠A′ED对折,点D落在直线A′E上的D′处,C落在C′处,折痕EF,F在BC上,若D、F、D′三点共线,则BF=( )A.m+12n B.m−n2 C.m+n2 D.m﹣n7.(2022春•普洱期末)有一张长方形纸片ABCD,按下面步骤进行折叠:第一步:如图①,点E在边BC上,沿AE折叠,点B落在点B'处;第二步:如图②,沿EB'折叠,使点A落在BC延长线上的点A'处,折痕为EF.下列结论中错误的是( )A.△AEF是等边三角形 B.EF垂直平分AA' C.CA'=FD D.EA'=AF8.(2022•槐荫区二模)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将四边形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )A.5 B.7 C.8 D.6.59.(2022春•泰兴市月考)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为8,∠B=120°,则EF的值是( )A.23 B.4 C.43 D.610.(2022•资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=6,EF=2,∠H=120°,则DN的长为( )A.32 B.6+32 C.6−3 D.23−6二.填空题(共10小题)11.(2022•成华区模拟)如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA′,则△CGA'的周长的最小值为 .12.(2022•安徽二模)如图(1),四边形ABCD是正方形,点E是边AD上的点,将△CDE沿着直线CE折叠,使得点D落在AC上,对应点为F.(1)CDEF= ;(2)如图(2),点G是BC上的点,将△ABG沿着直线AG折叠,使得点B落在AC上,对应点为H,连接FG,EH,则S正方形ABCDS四边形EFGH= .13.(2022•邓州市一模)如图(1)是一张菱形纸片,其中∠A=135°,AB=3+1,点E为BC边上一动点.如图(2),将纸片沿AE翻折,点B的对应点为B';如图(3),将纸片再沿AB'折叠,点E的对应点为E'.当AE'与菱形的边垂直时,BE的长为 .14.(2022春•成都期末)如图,在边长为2的正方形ABCD中,点E,F分别是边BC,AD上的点,连接EF,将四边形ABEF沿EF折叠,点B的对应点G恰好落在CD边上,点A的对应点为H,连接BH.则BH+EF的最小值是 .15.(2022•微山县一模)已知矩形ABCD中,AB=6.点E为AD上一个动点,连接CE,将△CDE沿CE折叠,点D落在点F处,当点F为线段AB的三等分点时,AE的长 .16.(2022春•蜀山区期末)如图,矩形ABCD中,AB=2,∠DAC=30°,点M是BC边的中点,点P是对角线AC上一动点(0<CP<1.5),将△CPM沿PM折叠,点C落在点C'处,线段MC′交AC于点N,连接AC,当△ANC′是直角三角形时,线段AC′的长度为 .17.(2022春•江汉区期末)如图,将矩形ABCD沿直线EF折叠,使点A与点C重合,点B落在点G处,折痕交AD于点E,交BC于点F,若△CEF的面积与△CDE的面积比为4:1,则EFDE的值是 .18.(2022•庐阳区校级三模)如图1,在五边形纸片ABCDE中,AB=1,∠A=120°,将五边形纸片沿BD折叠,点C落在点P处,在AE上取一点Q,将△ABQ和△EDQ分别沿BQ、DQ折叠,点A、E恰好落在点P处.(1)∠C+∠E= °;(2)如图2,若四边形BCDP是菱形,且Q、P、C三点共线时,则BQAB= .19.(2022•长春模拟)如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG的最小值是 .20.(2022•沈河区二模)如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是 .三.解答题(共10小题)21.(2022•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求MNDN的值.22.(2022•张家港市模拟)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF、CE和EF,设EF与AC的交点为O.(1)求证:四边形AFCE是菱形;(2)若AE=213cm,△ABF的为面积12cm2,求△ABF的周长.23.(2022•淮安)已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).(1)求证:四边形ABCD是矩形;(2)在四边形ABCD中,求ABBC的值.24.(2022•南岗区模拟)已知:将矩形ABCD折叠,使点A与点C重合,折痕为EF,其中点E,F分别在AB,CD上,点D的对应点为点G,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若∠CFG=60°,连接AC交EF于点O,连接DO,GO,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.(2022春•浦东新区期末)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)求点D的坐标;(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.26.(2022春•江岸区期中)如图,将矩形ABCD纸片对折,设折痕为MN,再通过折叠使B点落在折痕MN上的B',设两条折痕的交点为F,连接BF、EB'、BB'、AB'.(1)求∠ABB'的度数;(2)请判断四边形BFB'E的形状,并说明理由.27.(2022•西固区校级模拟)在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值28.(2022秋•梅列区校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.29.(2022•道外区三模)将等腰三角形ABC折叠,使顶点B与底边AC的中点D重合,折线分别交AB,BC于点F,E,连接DF,DE.(1)如图1,求证:四边形DFBE是菱形;(2)如图2,延长FD至点G,使FD=DG,连接GC,并延长GC交FE的延长线于点H,在不添加任何辅助线的情况下,请直接写出图2中的所有平行四边形(不包括以BF为一边的平行四边形).30.(2022秋•宜宾期末)如图矩形纸片ABCD的边长AB=a,BC=b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.若对角线BD与MN交于点O,分别沿BM、DN折叠,折叠后点A、C恰好都落在点O处,并且得到的四边形是菱形BNDM.请你探索a、b之间的数量关系,并求出当a=3时,菱形BNDM的面积.
相关资料
更多